у=-2х+3 - линейная функция. График прямая. Область определения все действительные числа Угловой коэффициент равный -2 меньше нуля, значит функция убывает на всей области определения. Значит наибольшее значение функции будет получено при наименьшем значении аргумента, то есть при х = -2. у(-2) = -2*(-2) + 3 = 7
Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым: abcd=1000a+100b+10c+d dcba=1000d+100c+10b+a
По условию: abcd-dcba=909 1000a+100b+10c+d-1000d-100c-10b-a=909999a-999d+90b-90c=909 999(a-d)+90(b-c)=909 111(a-d)-10(c-b)=101 Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит: 111-10(c-b)=101 10(c-b)=10c-b=1 ⇒a=d+1, из чего видно, что d≤8 c=b+1, из чего видно, что b≤8 Есть еще условие, что сумма цифр кратна 9.a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=18d+b=8
Пусть исходное число было abcd, тогда записанное в обратном порядке число dcba. По разности 909 можно заметить, что такое возможно, только, если a>d. Распишем по разрядным слагаемым: abcd=1000a+100b+10c+d dcba=1000d+100c+10b+a
По условию: abcd-dcba=909 1000a+100b+10c+d-1000d-100c-10b-a=909999a-999d+90b-90c=909 999(a-d)+90(b-c)=909 111(a-d)-10(c-b)=101 Поскольку a>d, то единственный возможный вариант - это a-d=1, при (a-d)>1, например 2: 222-10(с-b)>101, а значит: 111-10(c-b)=101 10(c-b)=10c-b=1 ⇒a=d+1, из чего видно, что d≤8 c=b+1, из чего видно, что b≤8 Есть еще условие, что сумма цифр кратна 9.a+b+c+d=2d+1+2b+1=2(d+b+1) ⇒ поскольку сумма цифр четная, то остается единственный вариант: 2(d+b)+2=18d+b=8
Область определения все действительные числа
Угловой коэффициент равный -2 меньше нуля, значит функция убывает на всей области определения. Значит наибольшее значение функции будет получено при наименьшем значении аргумента, то есть при х = -2.
у(-2) = -2*(-2) + 3 = 7