По условию задачи 3b<2> + b<4> =40, где b<2> и b<4> это соответственно, второй и четвертый члены прогрессии, отсюда, учитывая, что b<2> = b<1> + d
и b<4> = b<1> + 3d, получим b<1> = 10-1,5d
Рассмотрим функцию
f(d)= b<3> * b<5>= 8d +6b<1>d + (b<1>)^2=
=1,25d^2 +30d +100 Найдем производную функции f(d) и критические точки f'(d)=2,5d +30, f'(d)=0, d=-12
При переходе через критическую точку d=-12 производная меняет знак с - на +, т.о. при d=-12 произведение третьего и пятого членов прогрессии будет минимальным
По условию задачи 3b<2> + b<4> =40, где b<2> и b<4> это соответственно, второй и четвертый члены прогрессии, отсюда, учитывая, что b<2> = b<1> + d
и b<4> = b<1> + 3d, получим b<1> = 10-1,5d
Рассмотрим функцию
f(d)= b<3> * b<5>= 8d +6b<1>d + (b<1>)^2=
=1,25d^2 +30d +100 Найдем производную функции f(d) и критические точки f'(d)=2,5d +30, f'(d)=0, d=-12
При переходе через критическую точку d=-12 производная меняет знак с - на +, т.о. при d=-12 произведение третьего и пятого членов прогрессии будет минимальным
xy=u
x-y=v
получим новую систему
u+2v=10 -5u-10v=-50
5u-3v=11 5u-3v=11
-13v=-39
v=3 u=10-6=4
xy=4
x-y=3
воспользуемся теоремой Виета
x=-1 y=-4
x=4 y=1