Пусть скорость первого пешехода - хскорость второго пешехода - увремя в пути обоих пешеходов 3ч 45 мин= 3,75чтогда первый пешеход успеет пройти расстояние 3,75х ,а второй 3,75 утогда 3,75 х+3,75у=30- первое уравнение Если первый выйдет на 2 часа раньше и будет идти ещё 2,5 часа то он успеет пройти расстояние 4,5х ,а второй выходит позднее и пройдёт 2.5 у Значит 4,5х+2,5у=30 второе уравнение системы Пусть скорость первого пешехода - хскорость второго пешехода - увремя в пути обоих пешеходов 3ч 45 мин= 3,75чтогда первый пешеход успеет пройти расстояние 3,75х ,а второй 3,75 утогда 3,75 х+3,75у=30- первое уравнение Если первый выйдет на 2 часа раньше и будет идти ещё 2,5 часа то он успеет пройти расстояние 4,5х ,а второй выходит позднее и пройдёт 2.5 у Значит 4,5x+2,5 у=30 второе уравнение системы
3,75x+3,75y=30 4,5x+2,5y=30 Первое уравнение умножить на 2,второе на (-3)получаем
7,5x+7,5y=60 -13,5x-7,5y=-90 Используем метод сложения и получаем-6х=-30х=-30:(-6)х=5 км/ч-скорость первого пешеходаПодставляем во второе уравнение системы4,5*5+2,5у=3022,5+2,5у=302,5у=30-22,52,5у=7,5у=7,5:2,5у=3 км/ч-скорость второго пешеходаответ 5 км/ч и 3 км/ч
Первая парабола У=-Х²+4 имеет вершину на оси У (при Х=0 У=4) и ветви ее направлены вниз, т.к. перед Х² минус. Она симметрична оси У.
Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.
Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.
Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек) и видим, что пересечение двух парабол - именно в точках с координатами (0;4) и (2;0).
Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.