-13; -15; -17
13; 15; 17
(2x+1) - первое нечетное число;
(2x+3) - второе нечетное число;
(2x+5) - третье нечетное число;
Составим уравнение:
(2x+1)² +(2x+3)² + (2x+5)² = 683
2²x²+2*2x*1²+1+2²x²+2*2x*3+3²+2²x²+2*2x*5+5² = 683
4x²+4x+1+4x²+12x+9+4x²+20x+25 = 683
12x²+36x+36 = 683
12x²+36x+36-683 = 0
12x²+36x-648 = 0
x²+3x-54 = 0 Разделим уравнение на 12
D = b²-4ac = 3²-4*1*(-54) = 9+216 = 225
x₁ = (-b-√D)/2a = (-3-15)/2*1 = -9
x₂ = (-b+√D)/2a = (-3+15)/2*1 = 6
Найдем числа:
при x=-9
(2x+1) = 2*(-9)+1= -17
(2x+3) = 2*(-9)+3= -15
(2x+5) = 2*(-9)+5= -13
при x=6
(2x+1) = 2*6+1=13
(2x+3) = 2*6+3=15
(2x+5) = 2*6+5=17
Проверим решение:
(-13)² + (-15)² + (-17)² = 169+225+289 = 683
13² + 15² +17² = 169+225+289 = 683
ответ: -13; -15; -17
13; 15; 17
247/16-х время против течения
247/16+х время по течению, оно на 6ч меньше, чем время против течения.
Составляем уравнение и решаем его
247/16-х - (247/16+х)=6 приводим к общему знаменателю(16+х)(16-х), получаем
247(16+х ) - 247(16-х) = 6(16+х)(16-х)=6(256-х²)
247(16+х-16+х)=1536-6х²
247*2х=1536-6х²
делим на 2
247х=768-3х²
3х²+247х-768=0
Находим корни квадратного уравнения , получаем
Х₁=( -247- √ 2472+4*3*768):2*3= (-247-265):6= отриц.число, скорость течения не может быть отриц. По модулю
Х₂=( -247+ √ 2472+4*3*768):2*3= (-247+265):6=18:6=3 км/ч