Смотри) так как уравнение с двумя переменными нужно сделать так чтоб она из переменых в любом случае сократилась,в примере а) и так уже есть переменные которые могут сократиться это х и -х вообщем сладываем получается 3y=6, решаем получаем 2,чтоб узнать y нам нужно подставить х в первое уравнение получаем новое уравнение х+2=4 решаем ответ 2
в примере б) нужно сделать переменную которая должна сократиться это будет y, для этого нам нужно второе уравнение умножить на -2 умножаем и получаем -8х-2y=-6 складываем первое и второе уравнение получаем -3х=6 отсюда х=-2 далее мы подставляем х во второе уравнение и получаем -8+y=3 и находим y решаем и y=11
Пусть во второй бригаде х рабочих, тогда в первой 2х рабочих. В первой бригаде число рабочих уменьшилось на 5, значит их стало 2х-5. А во второй число рабочих уменьшилось на 2, значит их стало х-2. Так как в первой бригаде рабочих стало на 7 больше, чем во второй, то составим и решим уравнение: 2х-5-(х-2)=7 2х-5-х+2=7 х-3=7 х=7+3 х=10 значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих. ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих
(a)+(b)+(c)+d
2)+(m)+n+(k)+(e)
3)(2a)+(3b)+(4c)+(5d)
4)+(5p)+3q+(10m)