М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
danilmannanov262
danilmannanov262
02.12.2021 07:58 •  Алгебра

Лодка км по течению реки, а затем 4км против течения, затратив на весь путь 1 час 40 минут. определите, какой может быть скорость течения ( в км/ч) если собственная скорость лодки равна 8 км/ч

👇
Ответ:
povshedna
povshedna
02.12.2021
10/8+х+4/8-х=5/3
10*(24-3х)+4*(24+3х)=5*(64-х^2)
240-30x+96+12x-320+5x^2=0
5x^2-18x+16=0
x=2 и x=1,6
4,8(64 оценок)
Ответ:
nikitatsyplyat
nikitatsyplyat
02.12.2021
Х - скорость течения реки
\frac{10}{8+x} + \frac{4}{8-x} = \frac{5}{3}
\frac{240-30x+96+12x-320+5x^2}{(8+x)*(8-x)*3}=0
5x^2-18x+16=0
D = 324 - 4 * 5 * 16 = 4
x_1= \frac{-b- \sqrt{D} }{2a} = \frac{18-2}{10}=1,6
x_2= \frac{-b+\sqrt{D} }{2a} = \frac{18+2}{10}=2

Оба значения х удовлетворяют условию задачи

ответ: 1,6 км/ч - скорость течения реки
           2 км/ч - скорость течения реки
4,5(98 оценок)
Открыть все ответы
Ответ:
weazelhubozcy1c
weazelhubozcy1c
02.12.2021

Объяснение:

1.

Пусть  скорость течения реки равна х.      ⇒

Против течения реки скорость катера будет равна 25-х (км/ч),

а по течению реки скорость катера будет равна 25+х (км/ч).   ⇒

\frac{20}{25-x}+\frac{30}{25+x}=2\\ 20*(25+x)+30*(25-x)=2*(25-x)*(25+x)\\500+20x+750-30x=2*(625-x^2)\\1250-10x=1250-2x^2\\2x^2-10x=0\ |:2\\x^2-5x=0\\x*(x-5)=0\\x_1=0\ \notin\ \ \ \ x_2=5.

ответ: скорость течения реки 5 км/ч.

2.

Пусть  скорость течения реки равна х.      ⇒

Против течения реки скорость катера будет равна 25-х (км/ч),

а по течению реки скорость катера будет равна 25+х (км/ч).  

Пусть время, затраченное на путь против течения реки равно t₁, а

а время, затраченное на путь по течению реки равно t₂.   ⇒

\left \{ {\frac{20}{25-x}=t_1} \atop {\frac{30}{25+x}=t_2 }} \right. .

Суммируем эти уравнения:

\frac{20}{25-x}+\frac{30}{25+x}=t_1+t_2\\

По условию задачи на весь путь катер затратил t₁+t₂=2 (ч).     ⇒

\frac{20}{25-x}+\frac{30}{25+x}=2\\ 20*(25+x)+30*(25-x)=2*(25-x)*(25+x)\\500+20x+750-30x=2*(625-x^2)\\1250-10x=1250-2x^2\\2x^2-10x=0\ |:2\\x^2-5x=0\\x*(x-5)=0\\x_1=0\ \notin\ \ \ \ x_2=5.

ответ: скорость течения реки 5 км/ч.

1. Пусть равное количество окуней равно х.    ⇒

2. Первый рыболов поймал х+7,второй х+6, а третий х+8.

3. (x+7)+(x+6)+(x+8)=51

   3x+21=51

   3x=30 |:3

    x=10    ⇒

ответ: первый рыболов поймал 17 окуней,

            второй рыболов поймал 16 окуней,

            третий рыболов поймал 18 окуней.

4,6(41 оценок)
Ответ:
ТёмаТащер
ТёмаТащер
02.12.2021

Общее решение дифференциального уравнения

                                      y = C·sin(x)

Частное решение диф.уравнения с начальным условием у(π/2) = 1

                                       y = sin(x)

Объяснение:

Решение уравнения:

y’·sin(x) - y·cos(x) = 0                            при y(π/2) = 1

Данное уравнение первого порядка с разделяющимися переменными

y’·sin(x) = y·cos(x)

Разделим обе части уравнения на y·sin(x)

y’/у = cos(x)/sin(x)

                                 \frac{y'}{y}=\frac{cos(x)}{sin(x)}

                                  \frac{dy}{y}=\frac{cos(x)}{sin(x)}dx

Интегрируем обе части уравнения

                        \int\limits\frac{dy}{y}=\int\limits\frac{cos(x)}{sin(x)}dx  

                          ln|y| = ln|sin(x)| + lnC

                             y = C·sin(x)

Получили общее решение диф.уравнения

Частное решение получим подставим начальное условие   у(π/2) = 1

                             1 = С·sin(π/2)

                              С = 1

Следовательно частное решение диф.уравнения

                         у = sin(x)

Проверим решение подстановкой

y' = (sin(x))' = cos(x)

y’·sin(x) - y·cos(x) = cos(x)·sin(x) - sin(x)·cos(x) = 0

4,7(66 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ