Примем всю работу по покраске забора за единицу. Пусть производительность труда Ивана равна х, тогда производительность Андрея равна 4х. Их общая производительность равна (х+4х) и равна 5х. Чтобы найти время, за которое будет покрашен забор, нужно всю работу поделить на производительность. Таким образом, Андрей и Иван вместе покрасят забор за (1/(5х)) часов, что по условию равно 2 ч. Составляем уравнение: 1/10 - производительность труда Ивана. 1 : (1/10) = 1 * 10 = 10 ч - за столько часов может покрасить забор Иван.
Найдем, сколько чисел, делятся на 7: 1000/7=142 6/7, значит их 142.
Найдем, сколько чисел делится на 6: 1000/6=166 2/3, значит их 166.
Найдем, сколько чисел делится на 6 и на 7, т. е. на 6×7=42: 1000/42=23 17/21, значит их 23.
Всего рассматриваемых чисел 1000. Если отнять из них числа, которые делятся на 7 или на 6, получим искомый результат. Но т. к. некоторые числа делятся и на 6, и на 7, то прибавим эти числа, т. к. мы посчитали их 2 раза. Натуральных чисел первой тысячи, не делящихся ни на 6 ни на 7: 1000-142-166+23=715.