а={3;-1;1} и b={0;2;1}, пусть перпендикулярный вектор с={x,y,z}
Тогда скалярное произведение ac=0, bc=0, то есть
3x- y+z =0
2y+z =0
x^2+y^2+z^2=1 (так как с - единичный вектор).
Решая систему из этих трех уравнений, получим, что
z=-2y (из второго)
x=y (из первого)
Подставим все в последнее, получим, что 6у^2=1, то есть у=+-1/(корень из 6),
тогда х=+-1/(корень из 6), z=-+2/(корень из 6).
ответ: (1/(корень из 6),1/(корень из 6 ),-2/(корень из 6))
и (-1/(корень из 6),-1/(корень из 6 ),2/(корень из 6))
а={3;-1;1} и b={0;2;1}, пусть перпендикулярный вектор с={x,y,z}
Тогда скалярное произведение ac=0, bc=0, то есть
3x- y+z =0
2y+z =0
x^2+y^2+z^2=1 (так как с - единичный вектор).
Решая систему из этих трех уравнений, получим, что
z=-2y (из второго)
x=y (из первого)
Подставим все в последнее, получим, что 6у^2=1, то есть у=+-1/(корень из 6),
тогда х=+-1/(корень из 6), z=-+2/(корень из 6).
ответ: (1/(корень из 6),1/(корень из 6 ),-2/(корень из 6))
и (-1/(корень из 6),-1/(корень из 6 ),2/(корень из 6))
y=4x-8 для значений аргумента,равных -3,0,1,6.
при х=-3 y=-20
x=0 y=8
x=1 y=-4
x=6 y=16
2) y=x^2
при х=-4 y=16
x=0 y=0
x=3 y=9
x=4 y=16
x=5 y=25