{
x−y=1
x+y=9
⇔{
y=x−1
y=9−x
Графики линейных функций y = 9–x и y = x–1 - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.
Для функции y = 9–x (зелёные точки):
1) x=0 ⇒ y= 9–0= 9 ⇒ (0; 9)
2) y=0 ⇒ 0= 9–x ⇒ x= 9 ⇒ (9; 0).
Для функции y = x–1 (синие точки):
1) x=0 ⇒ y= 0–1= –1 ⇒ (0; –1)
2) y=0 ⇒ 0= x–1 ⇒ x= 1 ⇒ (1; 0).
Построим графики функций в одной системе координат (см. рисунок 1). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):
(5; 4).
\tt \displaystyle \left \{ {{3 \cdot x+y=1} \atop {x+y=5}} \right. \Leftrightarrow \left \{ {{y=1-3 \cdot x} \atop {y=5-x}} \right.{
x+y=5
3⋅x+y=1
⇔{
y=5−x
y=1−3⋅x
Графики линейных функций y = 1–3•x и y = 5–x - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.
Для функции y = 1–3•x (синие точки и синие штрихи):
1) x=0 ⇒ y= 1–3•0 = 1 ⇒ (0; 1)
2) x=1 ⇒ y= 1–3•1 = –2 ⇒ (1; –2).
Для функции y = 5–x (зелёные точки):
1) x=0 ⇒ y= 5–0 = 5 ⇒ (0; 5)
2) y=0 ⇒ 0= 5–x ⇒ x= 5 ⇒ (5; 0).
Построим графики функций в одной системе координат (см. рисунок 2). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):
(–2; 7).
\tt \displaystyle \left \{ {{y-6 \cdot x=-25} \atop {y-x=-5}} \right. \Leftrightarrow \left \{ {{y=6 \cdot x-25} \atop {y=x-5}} \right.{
y−x=−5
y−6⋅x=−25
⇔{
y=x−5
y=6⋅x−25
Графики линейных функций y = 6•x–25 и y = x–5 - прямые. Для построения графика прямой достаточно 2 точки, через которых проходит эта прямая. Находим эти точки из уравнения функций.
Для функции y = 6•x–25 (синие точки и синие штрихи):
1) x=2 ⇒ y= 6•2–25 = –13 ⇒ (2; –13)
2) x=3 ⇒ y= 6•3–25 = –7 ⇒ (3; –7).
Для функции y = x–5 (зелёные точки):
1) x=0 ⇒ y= 0–5 = –5 ⇒ (0; –5)
2) y=0 ⇒ 0= x–5 ⇒ x= 5 ⇒ (5; 0).
Построим графики функций в одной системе координат (см. рисунок 3). Из рисунка определяем точку пересечения графиков функций (красная точка и красные штрихи):
(4; –1).
1/2*sin2x+1/2*sin12x-sin2x=0
1/2*sin12x-1/2*sin2x=0
1/2*(sin12x-sin2x)=0
1/2*sin5xcos7x=0
sin5x=0⇒5x=πn,n∈z⇒x=πn/5,n∈z
cos7x=0⇒7x=π/2+πk,k∈z⇒x=π/14+πk/7,k∈z
2
3cos2x-1=cos2x/sin2x*2sin2x*cos2x
3cos2x-1=2cos²2x
cos2x=a
2a²-3a+1=0
D=9-8=1
a1=(3-1)/4=1/2⇒cos2x=1/2⇒2x=+-π/3+2πn⇒x=+-π/6+πn,n∈z
a2=(3+1)/4=1⇒cos2x=1⇒2x=2πk⇒x=πk,k∈z
3
2sin2x*cos2x=-2sin2x*sin3x
2sin2x*(cos2x+sin3x)=0
sin2x=0⇒2x=πn⇒x=πn/2,n∈z
cos2x+sin3x=0
cos2x+cos(π/2-3x)=0
2cos(π/4-x/2)cos(5x/2-π/4)=0
2sin(x/2-π/4)cos(5x/2-π/4)=0
sin(x/2-π/4)=0⇒x/2-π/4=πn⇒x/2=π/4+πn⇒x=π/2+2πn,n∈z
cos(5x/2-π/4)=0⇒5x/2-π/4=π/2+πk⇒5x/2=3π/4+πk⇒x=3π/10+2πk/5,k∈z
4
1/2*sin(-x)+1/2*sin7x+1/2*sin(-7x)+1/2*sin9x=0
1/2*sin9x-1/2*sinx=0
1/2*(sin9x-sinx)=0
1/2*2sin4xcos5x=0
sin4x=0⇒4x=πn⇒x=πn/4,n∈z
cos5x=0⇒5x=π/2+πk⇒x=π/10+πk/5,k∈z