x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
Сначала выпишем кол-во цифр из задуманного числа в ходах:
3067 - 1
9583 - 1
2140 - 2
2396 - 2
5086 - 1
Это даёт нам только факт, что в числах 3067, 9583, 5086 есть только одна цифра задуманного числа, что исключает появление в нём остальных (к примеру, в задуманном числе не будет цифр 3 и 7 одновременно). Предположим, что одна из цифр задуманного числа - 6.
В этом случае в задуманном числе не будет цифр 3, 0, 7 (появление в 3067), а также 5 и 8 (появление в 5086). Также 6 не будет третьей и четвёртой (в числах 3067 и 5086 соответственно нет быков).
Теперь снова предположим, что ещё одна цифра задуманного числа - 2.
В этом случае в задуманном числе не будет цифры 9 (в 2396 две коровы - числа 6 и 2). Но встаёт проблема: в числе 9583 тогда остаётся 0 быков/коров (цифры 5, 8 и 3 мы исключили в предыдущем ходе). Значит, двойки в задуманном числе нет.
Обратимся к цифре 9. Может, в задуманном числе есть она?
В этом случае 9 будет являться быком в числе 9583, а также подтвердит факт, что в задуманном числе нет 2 и 3 (в 2396 коровы - числа 9 и 6).
Если 9 - бык в 9583, а 6, как мы сказали ранее, не третья и не четвёртая, значит, задуманное число имеет вид 96**, где * - пока не найденные нами числа.
Обратимся к числу 2140. Ранее мы выяснили, что 2 и 0 в задуманном числе нет. Значит, бык и корова здесь - цифры 1 и 4. Единица быком не может быть - ведь на втором месте в задуманном числе уже стоит 6. Значит, бык - четвёрка, а 1 занимает оставшееся последнее место.