Решение: Докажем, что последовательность an=4,2n+3 является арифметической прогрессией. Найдём а1,а2,а3: а1=4,2*1+3=7,2 a2=4,2*2+3=11,4 a3=4,2*3+3=15,6 d=a2-a1=11,4-7,2=4,2 d=a3-a2=15,6-11,4=4,2 Как видим, что каждый член начиная со второго получается с добавлением к нему постоянного числа d (разности прогрессии)-что доказывает, что данная последовательность- арифметическая прогрессия. Sn=(a1+an)*n/2 в данном случае а10 за а1 а19 за а10 an=a1+d*(n-1) a10=4,2*10+3=42+3=45 a19=4,2*19=79,8+3=82,8 n=10 Отсюда: S(10-19)=(45+82,8)*10/2=127,8*5=639
При каких a неравенство (2a-3)cosx -5 >0 не имеет решения.а) { 2a -3 < 0 ;cosx < 5/(2a-3).⇔{ a < 1,5 ;cosx < 5/(2a-3) . не имеет решения , если 5/(2a-3) ≤ -1⇔5/(2a-3)+1 ≤ 0 ⇔(a+1)/(a-1,5) ≤ 0. a∈ [-1 ;1,5) .
б) 2a-3 =0 неравенство не имеет решения. a =1,5.
в) { 2a -3 > 0 ;cosx > 5/(2a-3)..⇔{ a > 1,5 ;cosx > 5/(2a-3) . не имеет решения , если 5/(2a-3) ≥1⇔5/(2a-3)-1 ≥ 0 ⇔(a-4)/(a-1,5) ≤ 0. a∈ (1,5 ; .4].