М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Parastaev
Parastaev
09.02.2020 16:39 •  Алгебра

Представьте в виде многочлена 1) 7х(4у-х)+4х(х-7у) 2) 4а(7х-1)-7(4ах+1) 3) а( а+в)+в(а-в) 4) 5а(6а+3в)-6а(5в-2а) 5) 8м(м+н)-3н(2м-4н) .: -)

👇
Ответ:
Захар1191928
Захар1191928
09.02.2020
1) 7х(4у-х)+4х(х-7у)=28xy-7x^2+4x^2-28xy=-3x^2=-3x^2+0x+0
2) 4а(7х-1)-7(4ах+1)=28ax-4a-28ax-7=-4a-7
3) а( а+в)+в(а-в)=a^2+ab+ab-b^2=a^2+2ab-b^2
4) 5а(6а+3в)-6а(5в-2а)=30a^2+15ab-30ab+12a^2=42a^2-15ab
5) 8м(м+н)-3н(2м-4н)=8m^2+8mn-6mn+12n^2=8m^2+2mn+12n^2
4,8(68 оценок)
Открыть все ответы
Ответ:
Tgnbva
Tgnbva
09.02.2020

ax² + bx + c = 0 - квадратное уравнение (a ≠ 0), называется неполным, если b = 0, или c = 0, или оба сразу (b = 0 и c = 0). Разберем все эти случаи.

1) b = 0 и c ≠ 0

ax² + c = 0

ax² = -c

x² = -c / a

x² ≥ 0, поэтому для того, чтобы уравнение не имело корней достаточно -c / a < 0; c / a > 0 - получили ответ на первый вопрос

2) b ≠ 0; c = 0

ax² + bx = 0

x·(ax + b) = 0

x₁ = 0; x₂ = -b / a

То есть корни будут всегда, и мы получили ответ на второй вопрос задачи:

(при b ≠ 0; c = 0; Уравнение ax² + bx = 0 имеет 2 корня, один из которых 0)

3) b = 0 и c = 0

ax² = 0

x = 0, то есть всегда корнем будет 0

Объяснение:

4,5(72 оценок)
Ответ:

ответ:

объяснение:

здесь область допустимых значений состоит только из двух

под первым корнем квадратный трехчлен --парабола, ветви вверх:  

2x²-8x+6  ≥ 0 

x²-4x+3 ≥ 0 корни: 1 и 3 (по теореме виета)

решение: х  ∈ (-∞; 1] u [3; +∞) 

под вторым корнем квадратный трехчлен --парабола, ветви вниз:  

-x²+4x-3 ≥ 0 

x²-4x+3 ≤ 0 корни те же))

решение: х  ∈ [1; 3]

пересечением этих двух промежутков (условия должны выполняться одновременно) будет множество из двух точек: х ∈ {1; 3}

легко проверить, что х=1 решением не является, т.к. сумма двух неотрицательных чисел (это квадратные корни) не может быть   < 1-1 (меньше нуля)

остается х = 3:   √0 +  √0 < 3-1 это верно))

ответ: х=3

4,6(41 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ