Даны прямые:
L1: 4x+2y-12=0
L2: 3x+y-5=0
L3: 4x-y-5=0
Находим точку пересечения прямых L1 и L2, решая систему:
{4x+2y-12=0 4x + 2y - 12 = 0
{3x+y-5=0 |x(-2) = -6x - 2y + 10 = 0
-2x + 2 = 0,
x = 2/2 = 1, y = 5 - 3x = 5 - 3*1 = 2.
Точка (1; 2).
У прямой, перпендикулярной заданной в общем виде Ах + Ву + С = 0 коэффициенты А и В меняются на -В и А.
Получаем x + 4y + С = 0, подставляем координаты найденной точки пересечения: 1 + 4*2 + С = 0, отсюда С = -9.
ответ: x + 4y - 9 = 0.
-5x=6y-36
6y+5x-36=0
или 5х+6у-36=0
для уравнения вида Ах+Ву+С=0 вектором, перпендикулярным направлению прямой, будет вектор {A; B}. А высота как раз будет перпендикулярна к этой прямой по условию.
Заметим, что угловой коэффициент искомой прямой-высоты k равен отношению ординаты направляющего вектора к абсциссе направляющего вектора. Так как именно это отношение будет тангенсом угла, который образует направляющий вектор с осью ох.
k=1,2
Теперь уравнение высоты принимает вид у=1,2х+b. Так как эта прямая высота проходит через точку А, то подставим координаты этой точки в найденное уравнение высоты.
0=1,2*(-2)+b
0=-2,4+b
b=2,4
Значит уравнение высоты, проходяәей через точку А имеет вид
у=1,2х+2,4