1. Проведемо перпендикуляри з точок С і Д на ав. Позначимо їх знижки за умовою
кут СКД=45.
2. З треуг. АВС СК-висота правильного трикутника
СК=АВ * sqrt {3} / 2=6
3. В треуг. АВД ДК-висота, опущена на підставу рівнобедреного трикутника. Як відомо, вона збігається з медіаною.
АК= АВ / 2= 2 sqrt {3}
З прямоуг. треуг. АКД за теоремою Піфагора
ДК= sqrt( АТ^2-АГ^2)= sqrt (14-12)= sqrt 2
4 у трикутнику СКД СК=6, СД=sqrt 2 . Кут СКД= 45
За теоремою косинусів
СД^2=36+2-2*6*sqrt 2*cos 45=26
СД=корінь з 26
1) Область определения: x ∈ (-∞; ∞). 2) Четность-нечетность: Т.к. и , то функция является функцией общего вида. 3) Точки пересечения с Ox. Решим исходное уравнение при y = 0. (метод решения: Виета-Кардано) Получим один корень: x = 0.148 - абсцисса точки пересечения графка с осью Ox. Координаты точки: (0.148; 0)
Точка пересечения с Oy. Найдем y, подставив в уравнение x = 0. Получим: y = -5. Координаты точки: (0, -5).
4) Так как функция кубическая, то точек экстремума не имеет.
5) Первая производная.
2. Вторая производная. Находим корни уравнения. Для этого полученную функцию приравняем к нулю. Откуда точка перегиба: x = 5/3
кут СКД=45.
2. З треуг. АВС СК-висота правильного трикутника
СК=АВ * sqrt {3} / 2=6
3. В треуг. АВД ДК-висота, опущена на підставу рівнобедреного трикутника. Як відомо, вона збігається з медіаною.
АК= АВ / 2= 2 sqrt {3}
З прямоуг. треуг. АКД за теоремою Піфагора
ДК= sqrt( АТ^2-АГ^2)= sqrt (14-12)= sqrt 2
4 у трикутнику СКД СК=6, СД=sqrt 2 . Кут СКД= 45
За теоремою косинусів
СД^2=36+2-2*6*sqrt 2*cos 45=26
СД=корінь з 26