М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
смерть75
смерть75
07.07.2022 11:35 •  Алгебра

Как решить пример 3c(a+b-c) 3b(a-b-c)-3a(a+b)

👇
Ответ:
missisruso
missisruso
07.07.2022
Между первой скобкой и "3b" умножение?
4,8(12 оценок)
Открыть все ответы
Ответ:
uhudongoair
uhudongoair
07.07.2022
Минимальная сумма цифр трёхзначного числа равна 1 (число 100).
Максимальная сумма цифр трёхзначного числа равна 27 (число 999).
Из этих сумм только две делятся на 11: 11 и 22.
Значит, сумма цифр числа A равна либо 11, либо 22.
1) При сложении чисел A и 7 переноса в старшие разряды не происходит.
Тогда сумма цифр числа A+7 на 2 больше, чем сумма цифр числа A и равна либо 13 (11+2), либо 24 (22+2=24). Ни 13, ни 24 на 11 не делятся.
Данный случай не возможен.
2) Происходит перенос из разряда единиц в разряд десятков.
Значит, младшая цифра числа A равна 9, а сумма двух старших цифр равна либо 2, либо 13. Рассмотрим все такие числа:
2.1. A=119, A+11=130, 1+3+0=4 - не делится на 11.
2.2. A=209, A+11=220, 2+2+0=4 - не делится на 11.
2.3. A=499, A+11=510, 5+1+0=6 - не делится на 11.
2.4. A=589, A+11=600, 6+0+0=6
2.5. A=679, A+11=690, 6+9+0=15
2.6. A=769, A+11=780, 7+8+0=15
2.7. A=859, A+11=870, 8+7+0=15
2.8. A=949, A+11=960, 9+6+0=15
И в этом случае, чисел, удовлетворяющих условию задачи, нет.
3). Происходит перенос из десятков в сотни (вторая цифра числа A равна 9, а сумма первой и третьей либо 2, либо 13).
3.1. A=191, A+11=202, 2+0+2=4
3.2. A=290, A+11=310, 3+1+0=4
3,3. A=499 - это уже было
3.4. A=598, A+11=609, 6+0+9=15
3.5. A=697, A+11=708, 7+0+8=15
3.6. A=796, A+11=807, 8+0+7=15
3.7. A=895, A+11=906, 9+0+6=15
3.8. A=994, A+11=1005, 1+0+0+5=6.
Мы рассмотрели все возможности. Вывод - чисел, удовлетворяющих условию задачи нет.
Я бы мог это доказать и короче, но, по-моему - так убедительнее.
4,7(69 оценок)
Ответ:
ммм298
ммм298
07.07.2022
Похожее задание было уже вчера или позавчера здесь. Ну да ладно)))
Суть в том, что есть на свете волшебная такая штука - дискриминант. (Похоже на слово дискриминация, правда?) Ну, он и производит дискриминацию - разделяет квадратные уравнения на те, где нет корней (это когда D<0); те, где корень всего один (когда D=0) и те, где корней два (D>0). Поэтому мы сейчас запишем выражение для нахождения дискриминанта (D=b^2-4ac), подставив а=2р-1; b=-(4p+3)= -4-3; c=2p+3, потом упростим его и посмотрим, при каких р он неотрицателен, а значит, уравнение имеет корни.
Итак, к делу:
D=(-4p-3)^2-4*(2p-1)(2p+3)= \\ &#10;=16p^2+24p+9-4(4p^2-2p+6p-3)= \\ &#10;=16p^2+24p+9-16p^2+8p-24p+12= 8p+21 \\ \\ &#10;8p+21 \geq 0 \\ &#10;8p \geq -21 \\ &#10;p \geq -21:8 \\ &#10;p \geq -2,625

ответ: х∈[-2,625; +∞).

(К слову: при р=0,625 решение уравнения будет одно, при p>0,625 их будет два.)
4,8(22 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ