Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х . А за у дней может закончить Алиса, тогда еѐ производительность равна / у . Т.к. они могут напечатать курсовую работу за 6 дней, то /х + /у = 1/ Если сначала % = / части курсовой напечатает Катя, а затем завершит работу Алиса, то Алисе остается % = / части курсовой. Вся курсовая работа будет выполнена за 12 дней т.е. ( /) х + (/ ) у = . Решим систему: /х + /у = / , (/) х + (/ ) у = .
+ = , + = ;
у = − , ; + * ( − , ) = *( − , )
у = − , ; , ² − + = ;
у = − , ; ² − + = ;
² − + = ; = , у = или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса. Значит, Катя может напечатать курсовую работу за 10 дней. ответ. за 10 дней
1. y=-x²+2x+3 а) функция пересекает ось ОХ в точках х=-1 и х=3, это и есть нули функции; б) у>0 на промежутке (-1;3), у<0 на промежутках (-∞;-1)∪(3;+∞); в) функция возрастает на промежутке (-∞:1) и убывает (1;+∞); г) наибольшее значение функции y=4; д) область значений функции (-∞;4).
2. y=2x²+8x а) нули функции 2x²+8x=0 2x(x+4)=0 2x=0 x+4=0 x=0 x=-4 б) находим точки экстремума функции y'=(2x²+8x)'=4x+8 4x+8=0 4x=-8 x=-2 - + -------------------(-2)-------------------- На промежутке (-∞;-2) производная функции <0, следовательно функция убывает. На промежутке (-2;+∞) производная функции >0, следовательно функция возрастает. в) Точка экстремума х=-2, в этой точке значение функции у=2*(-2)²+8(-2)=8+(-16)=-8 Производная в точке х=-2 меняет знак с "-" на "+" значит это точка минимума. График функции парабола ветви которой направлены вверх (коэффициент при х² положительный), следовательно область значений функции (-8;+∞).
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней