Для упрощения заменим tgx на, например, а. Неравенство примет вид: (a-1)*(a^2 - (1/4)*a - 3/4) <= 0 Найдём нули (и одновременно точки смены знака) левой части: Сначала рассматриваем первую скобку: a - 1 = 0 a = 1 Теперь вторую скобку: a^2 - (1/4)*a - 3/4 = 0 Обычное квадратное уравнение. Находим дискриминант: D = (1/4)^2 - 4 *(-3/4) = 1/16 + 3 = 1/16 + 48/16 = 49/16 = (7/4)^2 Теперь корни: a1,2 = (1/4 +- 7/4) / 2 = {1; -3/4} Итого у нас есть обычный корень -3/4 и корень кратности два -1 - то есть в этой точке функция будет нулевой, но знак менять не будет. Наносим их на числовую ось, подставляем любое некое значение (пусть будет a=0 и ищем знаки функции): (0-1)*(0^2 - (1/4)*0 - 3/4) = -1*(-3/4) = 3/4 При а = 0, т.е. на интервале от -3/4 до 1, функция положительна. Значит слева от -3/4 она отрицательна (в этой точке знак меняется), а справа от 1 положительна (не меняется). Возвращаемся к неравенству. Надо найти, где всё это меньше либо равно нулю. Это интервал от минус бесконечности до -3/4 включительно и отдельно точка 1. Но это мы нашли интервалы для нашей замены a. А теперь вернёмся к х и проведём обратную замену. Получается совокупность неравенства и уравнения: tg x <= -3/4 tg x = 1 Решаем неравенство: Тут можно нарисовать единичную окружность и отложить эту область - чтобы тангенс был отрицательным, синус и косинус должны иметь разный знак (значит угол во второй либо четвёртой четверти), абсолютное значение синуса должен быть 3/4 от косинуса или менее. На единичной окружности это будет выглядеть как заштрихованная область. В письменном виде это можно выразить как: х = [arctg -3/4; П] или [arctg -3/4; 2П]. Можно найти значения угла с таким тангенсом, но оно явно не обычное, нужны таблицы Брадисса или калькуляторы. Решаем уравнение: tg x = 1 x = arctg 1 = П/4 + ПN, где N = 0,1,2... На единичной окружности это две точки друг напротив друга. Общим решением будет совокупность решений неравенства (дающая два сектора окружности) и уравнения (дающая две точки). Спрашивайте, если что непонятно.
Доказать , что функция f(x)=(x+4)|x-5|+(x-4)|x+5| является нечётной.
* * * f(-5) = -10 ; f(5) =10 ; f(0) =4*5 - 4*5 = 0. * * *
a) x ≥ 5 .
f(x) = (x+4)*(x -5) + (x - 4)*(x +5) = 2(x² - 20) .
---
b) x ≤ - 5 .
f(x) = (x+4)*(-(x-5)) + (x- 4)*(-(x+5) ) = - ( (x+4)*(x-5) +(x - 4)*(x+5) ) =
= - 2(x² -20) .
f(-x₁) = - f(x₁) , т.к. если x₁ ≤ - 5 ⇒ - x₁ ≥ 5 .
---
c) - 5 < x < 5
f(x) = (x+4)*(- (x-5) ) + (x - 4)*(x +5) = - (x+4)*(x - 5) + (x - 4)*(x +5) =
= 2x .
Значит , если - 5 < x₀ ≤ 0 ,то 0 ≤ - x₀ < 5
f(- x₀) =-2x₀ = - 2f(x₀) .
функция f(x)=(x+4)|x-5|+(x-4)|x+5| является нечётной.
-2(x² -20) 2x 2x 2(x² -20)
[-5] [0] [5]
* * * * * * *P.S.* * * * * * *
f(-5) = -2((-5)² -20) =10 или f(-5) =2*(-5) = - 10 .
f(5) =2(5² -20) =10 или f(5) =2*5 =10.
f(0) =2*0 =2*(-0) =0 .