Очень просто. Обозначим катеты как a и b. По теореме Пифагора a^2 + b^2 = 15^2 = 225. Как известно, площадь прямоугольного треугольника равна половине произведения катетов: a*b*0.5 = 54. Составляем систему из этих двух уравнений. Решаем подстановкой, допустим, возьмем катет a: a = 54/(0.5*b) = 54*2/b = 108/b. Далее подставляем в первое уравнение. Только не пугайся, числа большие: (108/b)^2 + b^2 = 225; 11664/b^2 + b^2 = 225. Умножаем обе части на b (в этом отношении мы можем делать что угодно, ведь длина катета - величина положительная) : 11664 + b^4 = 225*b^2. Переносим все в левую часть: b^4 - 225*b^2 + 11664 = 0. Заменим b^2 на x, тогда b^4 = x^2: x^2 - 225x +11664 = 0. Решаем квадратное уравнение: дискриминант равен (-225)^2 - 4*1*11664 = 50625 - 46656 = 3969 = 63^2. Далее находим корни: x1 = (-(-225) - 63)/2*1 = (225-63)/2 = 162/2 = 81. Т. е. x1 = 81, а значит b1 = корень квадратный из 81 = 9 (помним: длина катета - величина положительная) . Т. е. один катет мы уже нашли - он равен 9 см. Второй корень уравнения лучше не искать, второй катет можно найти из подстановки a = 108/b = 108/9 = 12. Все. Мы нашли катеты, они равны 9 см и 12 см соответственно. Задача решена. Можно сделать проверку: площадь равна 0.5*a*b = 0.5*12*9 = 54 см^2.
Примем весь объем работы за 1. Скорость первой бригады - х, скорость второй бригады у. Тогда за 3,5 часа первая бригада сделала 3,5 х работы. За 6 часов вторая бригада сделала 6у работы. Все это равно всему объему работы, то ест 1. составим первое уравнение.
3,5 х + 6у = 1. (1)
Второе. По условию весь объем работ вторая бригада выполняла бы на 5 часов больше, чем первая. поэтому вотрое уравнение t2 - t1 = 5;
1/y - 1/x = 5; x - y = 5xy; (2) Получили 2 уравнения с 2 неизвестными. Выразим y через x во втором уравнении. x = 5xy + y; x = y(5x + 1) ; y = x /(5x+1);
y = 1/7 : (5*1/7 +1) = 1/7 : 12/7 = 1/7 * 7/12 = 1/12. Итак, скорость первой бригады равна 1/7. и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/7 = 7 дней. Скорость второй бригады равна 1/12 и и тогда время, необходимое ей для выполнения всего объема работ, будет равно 1/ 1/12 = 12 дней. ответ 7 дней для 1 бригады и 12 дней для второй бригады. 12 можно было бы найти проще 5+7 = 12
Объяснение:
..........,.................