х ∈ (-∞;-1)∪(0,5;4)
Объяснение:
Метод интервалов(Этапы):
1) Решить уравнение f (x) = 0. Найти корни.
(х+1)(2х-1)(4-х)=0 х₁=-1; х₂=0,5; х₃=4
2)Отметить все полученные корни на координатной прямой. Таким образом, прямая разделится на четыре интервала:
(-∞;-1),(-1;0,5),(0,5;4),(4;+∞)
3)Выяснить знак (плюс или минус) функции f (x) на самом правом интервале. Для этого достаточно подставить в f (x) любое число, которое будет правее всех отмеченных корней;
f(10) = (10+1)(2*10-1)(4-10)=11*19*(-6) <0 - знак минус
4)Отметить знаки на остальных интервалах. Для этого достаточно запомнить, что при переходе через каждый корень знак меняется.
После этого останется лишь выписать интервалы, которые нас интересуют. Они отмечены знаком «+», т.к. неравенство имеет вид
f (x) > 0,
Пусть за х дней может закончить Катя, тогда еѐ производительность равна / х .
А за у дней может закончить Алиса, тогда еѐ производительность равна / у .
Т.к. они могут напечатать курсовую работу за 6 дней,
то /х + /у = 1/
Если сначала % = / части курсовой напечатает Катя,
а затем завершит работу Алиса, то Алисе остается
% = / части курсовой.
Вся курсовая работа будет выполнена за 12 дней т.е.
( /) х + (/ ) у = .
Решим систему:
/х + /у = / ,
(/) х + (/ ) у = .
+ = ,
+ = ;
у = − , ;
+ * ( − , ) = *( − , )
у = − , ;
, ² − + = ;
у = − , ;
² − + = ;
² − + = ;
= , у =
или = , у = . - не подходит, т.к. Катя печатает быстрее, чем Алиса.
Значит, Катя может напечатать курсовую работу за 10 дней.
ответ. за 10 дней
x ∈ (-∞; -1) ∪ (0,5; 4)
Объяснение:
На фото