Прогрессии принадлежат члены 2 и 4. Если между ними ничего нет, то это прогрессия из чётных чисел. Если есть ровно одно промежуточное число, то это прогрессия из всех натуральных чисел, начиная с двойки. Покажем, что ничего другого быть не может. Если между 2 и 4 есть более одного числа, то разность прогрессии является рациональным, но не целым числом. Запишем её в виде несократимой дроби: d=m/n, где n>1. Тогда все члены прогрессии будут рациональными числами с ограниченными в совокупностями знаменателями (делителями n). С другой стороны, при возведении в квадрат числa a2=2+d=2n+mn, которое также записано в виде несократимой дроби, получится несократимая дробь со знаменателем n2, и это противоречит сказанному выше.
Пусть первому на выполнение работы отдельно нужно (х) часов второму --- (х-6) часов тогда за 1 час первый перевозит (1/х) часть зерна, за 4 часа --- (4/х) часть второй --- (1/(х-6)) часть зерна, за 4 часа --- (4/(х-6)) часть зерна вместе они за 4 часа перевозят все зерно, т.е. ЦЕЛОЕ --- единицу отсюда уравнение: (4/х) + (4/(х-6)) = 1 (4х-24 + 4х) / (х(х-6)) = 1 8х - 24 = x^2 - 6x x^2 - 14x + 24 = 0 по т.Виета корни (2) и (12) первый корень не имеет смысла, т.к. один грузовик не может перевести все зерно быстрее (за 2 часа), чем два грузовика вместе (за 4 часа) ответ: первому потребуется на перевозку зерна в одиночестве 12 часов, второму 6 часов. ПРОВЕРКА: первый за час перевозит (1/12) часть зерна, за 4 часа --- в 4 раза больше (4/12 = 1/3) второй за час перевозит (1/6) часть зерна, за 4 часа --- (4/6 = 2/3) вместе за 4 часа они перевезут (1/3)+(2/3) = 1 --- ВРОДЕ ТАК)))
Покажем, что ничего другого быть не может. Если между 2 и 4 есть более одного числа, то разность прогрессии является рациональным, но не целым числом. Запишем её в виде несократимой дроби: d=m/n, где n>1. Тогда все члены прогрессии будут рациональными числами с ограниченными в совокупностями знаменателями (делителями n).
С другой стороны, при возведении в квадрат числa a2=2+d=2n+mn, которое также записано в виде несократимой дроби, получится несократимая дробь со знаменателем n2, и это противоречит сказанному выше.