М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
1NICOLAS1
1NICOLAS1
09.02.2022 13:18 •  Алгебра

(tga-sina)(cos²a/sina+ctga)

👇
Ответ:
fheeubeujdshebj
fheeubeujdshebj
09.02.2022

Докажем тождество:

(tga – sina) * (cos^2 a/sina+ctga) = sin^2 a;

Раскроем скобки в левой части тождества  и тогда получим:

tga * cos^2 a/sina + tga * ctg a – sin a * cos^2 a/sina – sina * ctga = sin^2 a;

Используя основные тождества тригонометрии, упростим правую часть выражения.

Получаем:  

sina/cosa * cos^2 a/sina + 1 – sina * cos^2 a/sina – sina * cosa/sina = sin^2 a;  

Сократи дроби и останется:

1/1 * cosa/1 + 1 – 1 * cos^2 a/1 –  1 * cosa/1 = sin^2 a;

cos a + 1 – cos^2 a – cos a = sin^2 a;

1 – cos^2 a = sin^2 a;

sin^2 a = sin^2 a;

Тождество верно.

4,8(39 оценок)
Открыть все ответы
Ответ:
Bdbdbbfbrhr
Bdbdbbfbrhr
09.02.2022

Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени.  Эта функция в общем виде может быть представлена как y = ax + b, где a  и b - любые числа ( в нашем случае a = 1, а b = 4/3).

Функция  y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить  y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.

4,5(91 оценок)
Ответ:
fedrpopov5
fedrpopov5
09.02.2022
Из первого равенства очевидным образом следуют неравенства |x| \ \textless \ 1, |y| \ \textless \ 1
Отсюда легко убедиться в справедливости неравенства под номером 2. Для этого достаточно обе части неравенства |y| \ \textless \ 1 возвести в квадрат, получив, y^{2} \ \textless \ 1, что и требовалось проверить.

Первое неравенство можно проверить, например, следующим образом. Представим первое равенство следующим образом:
x^{2} + y^{2} = 1 \\ (x+y)^{2} - 2xy = 1 \\ (x+y)^{2} = 1 + 2xy
Поскольку x > 0, y > 0, то 2xy > 0, а 1 + 2xy > 1. Значит, и (x+y)^{2} \ \textgreater \ 1
Поскольку x + y > 0, то из последнего неравенства следует неравенство x + y  > 1, что и требовалось доказать.

Последние два неравенства неверные. Сначала заметим, что из неравенства |x| \ \textless \ 1, |y| \ \textless \ 1, следует, что 0 <x < 1, 0 < y < 1
Можно доказать, что куб таких чисел меньше квадрата, в третьем же неравенстве наоборот всё.
Аналогично, куб числа от 0 до единицы всегда меньше самого числа. Эти утверждения очевидны. Поэтому неравенства 3 и 4 неверны. Выбрать какой-то один вариант тут не получится.
4,7(52 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ