1) Матрица линейного оператора выглядит следующим образом
α₁₁ α₁₂
α₂₁ α₂₂
Составим соответствующие уравнения после действия этого оператора
5α₁₁+4α₁₂=11
5α₂₁+4α₂₂=25
4α₁₁-3α₁₂=-16
4α₂₁-3α₂₂=-11
Решая систему находим элемениы матрицы
α₁₁=-1 α₁₂=4
α₂₁= 1 α₂₂=5
ответ: 9
2) Составим матрицу оператора
1 7 8
-5 -1 8
-2 -4 1
Транспонируем ее
1 -5 -2
7 -1 -4
8 8 1
ответ: 17
3) Решим соответствующее характеристическое уравнение
Для всех собственных значений найдем собственные вектора
-x₁+3x₂=0
x₁=1 x₂=1/3
-3x₁+4x₂=0
x₁=1 x₂=3/4
ответ: 13/12
4) x₁²+4x₁x₂+4x₁x₃+29x₂²+38x₂x₃+17x₃²=(x₁+2x₂+2x₃)²+(5x₂+3x₃)²+4x₃²=a₁²+a₂²+4a³₂
ответ: 6
В решении.
Объяснение:
Доказать тождество.
1)2х²(4x²-3)(3+4х²)=32х⁶-18х²
2)3х²(2х²+5)(5-2х²)=75х³-12х⁷
Доказать тождество - значит преобразовать (решить) левую часть, если после преобразования обе части равны, тождество доказано.
1)2х²(4x²-3)(3+4х²)=32х⁶-18х²
В скобках развёрнута разность квадратов, свернуть:
2х² * (4x² - 3)(3 + 4х²) = 2х² * (4x² - 3)(4х² + 3) =
= 2х² * (16х⁴ - 9) = 32х⁶ - 18х² (левая часть).
32х⁶ - 18х² = 32х⁶ - 18х², тождество доказано.
2)3х²(2х²+5)(5-2х²)=75х³-12х⁷
В скобках развёрнута разность квадратов, свернуть:
3х² * (2х² + 5)(5 - 2х²) = 3х² * (5 + 2х²)(5 - 2х²) =
= 3х² * (25 - 4х⁴) = 75х² - 12х⁶ (левая часть).
75х² - 12х⁶ ≠ 75х³-12х⁷, выражение не является тождеством.
α - угол второй четверти , значит Cosα < 0 , Ctgα < 0 .