f(0)=1
Объяснение:
f(x) = (5x^2 + 2x + 1)^7
Посдставь x=0
f(x) = (5*0^2 + 2*0 + 1)^7
f(0) = (5*0 + 2*0+ 1)^7
f(0)=(0+1)^7
f(0)=1^7
f(0)=1
Область определения функции f(x) - это все значения х, при которых функция существует, то есть, можно найти ее значение. Область определения обозначается D(f).
А) f(x)=37-3x
Это линейная функция. Вместо х можно подставить любое значение и получить у. Значит, функция определена при любом значении х. Ее область определения - вся числовая ось.
ответ: D(f) = R
Б) q(x)=35/x
Это дробно-рациональная функция. Она определена при любом значении х, кроме тех, которые обращают знаменатель в ноль. В данном случае, х не должен равняться нулю. Область определения функции q(x) - вся числовая ось, кроме точки 0.
ответ: D(q)=( - ∞; 0 ) ∪ ( 0; + ∞ )
В) u(x)=x²-7
Это квадратичная функция. Вместо х можно подставить любое значение и получить у. Значит, эта функция также определена при любом значении х, и ее область определения - вся числовая ось.
ответ: D(u) = R
Г) у=√х
Так как подкоренное выражение не может принимать отрицательные значения, то вместо х можно брать лишь положительные числа и число ноль, то есть область определения той функции - множество неотрицательных чисел.
ответ: D( f ) = [ 0; +∞ )
Решение.
Обозначим стороны прямоугольника как x и y.
Тогда периметр прямоугольника равен:
2(x+y)=26
Сумма площадей квадратов построенных на каждой из его сторон (квадратов, соответственно, два и это квадраты ширины и высоты, поскольку стороны смежные) будет равна
x2+y2=89
Решаем полученную систему уравнений. Из первого уравнения выводим, что
x+y=13
y=13-y
Теперь выполняем подстановку во второе уравнение, заменяя x его эквивалентом.
(13-y)2+y2=89
169-26y+y2+y2-89=0
2y2-26y+80=0
Решаем полученное квадратное уравнение.
D=676-640=36
x1=5
x2=8
Теперь примем во внимание, что исходя из того, что x+y=13 (см. выше) при x=5, то y=8 и наоборот, если x=8, то y=5
ответ: 5 и 8 см
Объяснение:
f(x)=7*(5x²+2x+1)⁶ *(10x+2)