1. Переносим все x и y в одну сторону Выражаем y: Подставляем в первое уравнение полученный у: Получаем квадратное уравнение: Решаем его: Подставляем полученное значение во второе уравнение: 2. Умножаем первое уравнение на 3: Вычитаем из первого уравнения второе: Подставляем полученное значение во второе уравнение: 3. Пусть первый комбайнер закончит уборку за x часов, а второй комбайнер - за x+4 часов. Тогда производительность первого комбайнера - , а производительность второго - . Общая производительность двух комбайнеров или Решим уравнение: Приводим к общему знаменателю: Решаем квадратное уравнение: - не удовлетворяет смыслу задачи 8 часов потребуется первому комбайнеру часов потребуется второму комбайнеру
1)![x^2 - 12x - 24 = 0](/tpl/images/1519/9848/93691.png)
данное уравнение имеет два различных корня.
по теореме Виета:
Т.к. произведение корней отрицательно, то два корня разных знаков: меньший - отрицательный, больший - положительный.
2)![3x^2 - 12x + 4 = 0](/tpl/images/1519/9848/da495.png)
уравнение имеет два различных корня.
по теореме Виета:
Т.к. произведение корней положительно, то имеет два корня одного знака, а т.к. сумма корней положительна, то имеет два положительных корня.
3)![-x^2 - 7x + 4{,}8 = 0](/tpl/images/1519/9848/ea24a.png)
уравнение имеет два различных корня. По т. Виета:
Т.к. произведение корней отрицательно, то имеет два корня различных знаков: меньший - отрицательный, больший - положительный.
4)![-3x^2 + 2{,}2x + 9{,}24 = 0](/tpl/images/1519/9848/b8972.png)
уравнение имеет два различных корня. По т. Виета:
Т.к. произведение корней отрицательно, то имеет два корня разных знаков: меньший - отрицательный, больший - положительный.