y=-2(x-1)^2
y=-2(x^2-2x+1)
y=-2x^2+4x-2
f(x)=-2x^2+4x-2
График - парабола, ветви вниз, т.к. коэффициент при x^2 отрицательный,
a=-2.
Точка вершины параболы (1;0): x=-b/2a=-4/2*-2=-4/-4=1;
y=-2*1+4*1-2=-4+4=0
Пересечение с осью У, при х=0: -2*0+4*0-2=-2 - точка пересечения (0;-2).
Точки пересечения с осью Х, при y=0:
-2x^2+4x-2=0 |2
-x^2+2x-1=0
D=2^2-4*(-1)*(-1)=0 Уравнение имеет один корень
х=(-2+0)/-2=1
График пересекается с осью Х в точке (1;0), т.е. вершина параболы лежит на оси 0Х.
График во вложении
Подобно звёздам на небосводе сияют в числовом космосе простые числа. Не одну тысячу лет к ним приковано внимание математиков – их вновь и вновь ищут, исследуют, находят им применение. Евклид и Эратосфен, Эйлер и Гаусс, Рамануджан и Харди, Чебышёв и Виноградов... Этот перечень выдающихся учёных занимавшихся простыми числами и задачами с ними связанными можно продолжать и продолжать.
На страницах нашего сайта уже шла речь о бесконечности ряда простых чисел и некоторых смежных вопросах. При этом нас интересовали все простые числа сразу. Иногда же интересно рассмотреть совокупности из двух, трёх, четырёх или более простых чисел. Именно о таких совокупностях – созвездиях простых чисел – пойдёт речь далее.
Простые числа-близнецыДва простых числа, которые отличаются на 2, как
5 и 7,
11 и 13,
17 и 19,
получили образное название близнецы (эти числа называют ещё парными простыми числами). Любопытно, что в натуральном ряду имеется даже тройня простых чисел – это числа
3, 5, 7.
Ну а сколько всего существует близнецов – современной математике неизвестно.
Числа-близнецы из заданной таблицы чисел можно просеивать, слегка подправив решето Эратосфена. Если для каждого вычеркнутого Эратосфена числа n вычеркнуть так же число n – 2, то в таблице останутся лишь такие числа р, для которых число р + 2 тоже простое. В пределах первой сотни близнецы – это следующие пары чисел:
3 и 5,
5 и 7,
11 и 13,
17 и 19,
29 и 31,
41 и 43,
59 и 61,
71 и 73.
С парами близнецов в пределах 10000 можно познакомиться на страницах нашего сайта в Таблице простых и парных простых чисел, не превосходящих 10000, где они выделены красным цветом.
Вот лишь некоторые свойства этих чисел, которых лежат на самой поверхности океана простых чисел:
все пары простых близнецов, кроме 3 и 5, имеют вид 6n ± 1;при делении на 30 все пары близнецов, кроме первых двух, дают следующие пары остатков:11 и 13,
17 и 19,
29 и 1;
по мере удаления от нуля близнецов становится всё меньше и меньше. Так, в пределах первой сотни натуральных чисел существуют восемь пар близнецов, а в пределах пяти сотен с 9501 по 10000 – шесть.Предполагается, что пар простых чисел-близнецов бесконечно много, но это не доказано. Исследования, проводимые в "глубоком числовом космосе", продолжают выявлять эти замечательные и загадочные пары. На данный момент рекордсменами считаются близнецы
3756801695685 · 2666669 ± 1,
которые были обнаружены 24 декабря 2011 года в рамках реализации проекта PrimeGrid. Для записи каждого из этих чисел понадобиться 200700 цифр.
Простые числа-триплеты
Это тройка различных простых чисел, разность между наибольшим и наименьшим из которых минимальна. Наименьшими простыми числами, отвечающими заданному условию, являются –
2, 3, 5 и 3, 5, 7.
Данная пара триплетов исключительна, так как во всех остальных случаях разность между первым и третьим членом равна шести. Обобщённо: последовательность простых чисел
p, p+2, p+6 или p, p+4, p+6
называется триплетом.
Простые числа-триплеты в пределах первой сотни:
5, 7, 11;
7, 11, 13;
11, 13, 17;
13, 17, 19;
17, 19, 23;
37, 41, 43;
41, 43, 47;
67, 71, 73.
В решении.
Объяснение:
Пароплав мав подолати відстань між двома портами, що дорівнює 80 км, за певний час. Проте оскільки він рухався зі швидкістю на 10 км/год меншою, ніж передбачалось, то запізнився на 24 хв. З якою швидкістю мав рухатись пароплав?
Пароход должен был преодолеть расстояние между двумя портами, равной 80 км, за определенное время. Однако, поскольку он двигался со скоростью на 10 км / ч меньше, чем предполагалось, то опоздал на 24 мин. С какой скоростью должен двигаться пароход?
Формула движения: S=v*t
S - расстояние v - скорость t – время
х - обычная скорость парохода.
х - 10 - фактическая скорость парохода.
80/х - обычное время парохода.
80/(х - 10) - фактическое время парохода.
Разница 24 минуты = 0,4 часа, уравнение:
80/(х - 10) - 80/х = 0,4
Умножить все части уравнения на х(х - 10), чтобы избавиться от дробного выражения:
80*х - 80*(х - 10) = 0,4*х(х - 10)
80х - 80х + 800 = 0,4х² - 4х
-0,4х² + 4х + 800 = 0/-0,4 для упрощения:
х² - 10х - 2000 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 100 + 8000 = 8100 √D=90
х₁=(-b-√D)/2a
х₁=(10-90)/2 = -80/2 = -40 - отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(10+90)/2
х₂=100/2
х₂=50 (км/час) - обычная скорость парохода.
Проверка:
50 - 10 = 40 (км/час) - фактическая скорость парохода.
80/40 - 80/50 = 2 - 1,6 = 0,4 (часа), верно.