Замечаем, что перестановки происходят отдельно среди четных чисел и среди нечетных чисел. Поэтому надо ответить на следующий вопрос: есть k предметов, расставленных в каком-то порядке слева-направо и соответствующим образом занумерованных; меняя местами за одну операцию два соседних предмета, нужно расставить их в том же порядке, но справа-налево. Говоря ученым языком, можно сказать, что сначала у нас не было ни одной инверсии (инверсия - это когда предмет с меньшим номером стоит правее предмета с большим номером), а надо сделать максимальное количество инверсий. Меняя местами соседей, мы каждый раз изменяем количество инверсий на 1. Конечно, нам невыгодно уменьшать количество инверсий, а выгодно - увеличивать. Но в каком порядке производить эту операцию - менять местами соседей - абсолютно непринципиально. Поступим, скажем, так. Поменяем сначала местами первый предмет и второй, затем первый и третий, первый и четвертый, и так далее, наконец, первый и последний. Всё. Первый предмет оказался на нужном месте и больше оттуда никуда сдвигаться не будет. Потребовалось нам для этого, естественно, (k-1) операция. Далее будем передвигать второй предмет до тех пор, пока он не поменяется местами с k-м предметом и не окажется рядом с первым, но левее первого. На это потребуется (k-2) операции. И так далее. Всего мы насчитаем операций.
Остается подвести итоги. Окончательный ответ зависит от того, каково n - четное оно или нечетное.
1-й случай: n - четное, n=2m. Это означает, что у нас m четных чисел и m нечетных чисел. Всего операций получится
2-й случай. n - нечетное, n=2m+1. Это означает, что у нас m четных чисел и (m+1) нечетных чисел.Всего операций получится
Решим задачу для n=5, 6, 7, 23.
n=5 - нечетное;
n=6 - четное;
n=7 - нечетное;
n=23 - нечетное;
Відповідь:
а) ні
б) так
в) так
г) ні
Пояснення:
Очевидно, що після додавання до парного числа або віднімання від нього одиниці, отримаємо НЕпарне, і навпаки. Уявімо, що гарбузи вже розкладено. Тоді числа гарбузів у будь-яких двох сусідніх кошиках матимуть різну парність.
Нехай у колі розставлено НЕпарну кількість кошиків. Пронумеруємо їх, скажімо, за годинниковою стрілкою. Почнемо для зручності з довільного кошика із НЕпарною кількістю гарбузів. Побачимо, що таке саме непарне число гарбузів міститиме 3-ій кошик (бо в другому — парна кількість гарбузів), 5-ий, ..., останній. Виходить, що в наступному кошику, який під номером "1", повинно бути парне число гарбузів. Але насправді воно НЕпарне. Отримали суперечність.
А от якби було розставлено парну кількість кошиків, то непарне число гарбузів, пронумерованих, як у попередньому абзаці, містив би ПЕРЕДостанній кошик. Тоді останній — парну, а наступний за ним, кошик під номером "1" — знов непарну, як ми й домовлялися.
Отже, здійснити те, що описано в умові задачі, можна, лише якщо використати парну кількість кошиків.