Нам нужно доказать, что √17 является иррациональным числом. Пусть оно является рациональным числом. Тогда его можно представить в виде m/n, где m ∈ Z, n ∈ N и дробь несократимая. Возведя в квадрат, получаем, что 17 = m²/n² Тогда 17n² = m² Чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число. Тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. Но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.
Х - изготовил деталей за 1 день первый рабочий у - изготовил деталей за 1 день второй рабочий , по условию задачи имеем : 5х - 7у = 3 8х + 15у = 162 , решим уравнения системой уравнений . Первое уравнение умножим на 8 , а второе на 5 и от первого отнимем второе . Получим : 40х - 56у = 24 40х + 75у = 810 -56у - 75у = 24 - 810 - 131у = - 786 у = 6 деталей изготовил второй рабочий за день Подставим полученное значение в первое уравнение : 5х - 7*6 = 3 5х = 3 + 42 5х = 45 х = 45/5 х = 9 деталей изготовил первый рабочий за 1 день
Пусть оно является рациональным числом.
Тогда его можно представить в виде m/n, где m ∈ Z, n ∈ N и дробь несократимая.
Возведя в квадрат, получаем, что 17 = m²/n²
Тогда 17n² = m²
Чтобы равенство было верным, необходимо, чтобы m ⋮ 17 тогда и n ⋮ 17, иначе данное равенство будет неверным, т.к. 17 - простое число.
Тогда дробь m/n будет сократимой, т.к. и числитель, и знаменатель кратны 17. Но это невозможно, поэтому дробь вида (m/n)² = 17 не существует ⇒ число 17 не может являться квадратом рационального числа, т.е. √17 - иррациональное число.