Sin2x=2sinx*cosx=-0.6 sinx*cosx=-0.3 sinx= -0.3/cosx; sin^2x=0.09/cos^2x теперь подставлю его выражение в основное тригонометрическое тождество sin^2x+cos^2x=1 получу .0.09/cos^2x+cos^2x=1 введу новую переменную t=cox^2x тогда 0.09/t+t=1 приводя все к общему знаменателю-в числителе получу 0.09+t^2=t t^2-t+0.09=0 D=1-4*0.09=1-0.36=0.64 t1=(1+0.8)/2=0.9 t2=(1-0.8)/2=0.1 сos^2x=0.9; cosx1=-3/√10; cos^2x=0.1; cosx2=-1/√10 sinx1=-0.3/cosx; sinx=-0.3/(-3/√10)=1/√10 sinx2=-0.3/(-1/√10)=0.3*√10 tgx1=sinx1/cosx1=(1/√10)/(-3/√10)=-1/3; ctgx1=-3 tgx2=sinx2/cosx2=0.3*√10/(-1/√10)=-3; ctgx2=-1/3
Чтобы графически решить систему уравнений надо выразить y через x и затем построить графики получившихся функций на одной координатной плоскости, их точки пересечения будут решениями данной системы. приводим к функциям: 1) y=-x^2+4 график - парабола, ветви вниз вершина: (0;4) найдем нули: y=0; x^2=4; x1=2; x2=-2 (2;0), (-2;0) Чтобы построить график этой функции, берем график y=-x^2 и сдвигаем его на 4 точки вверх по оси y, получим y=-x^2+4 и также этот график будет проходить через вышеуказанные точки. 2) y=x+2 линейная функция, для построения графика нужны 2 точки x=0; y=2; (0;2) y=0; x=-2; (-2;0) график в приложении: функция 1 - красным цветом, 2 - синим цветом они пересекаются в точках (-2;0) и (1;3) - это и есть решения системы. ответ: (-2;0), (1;3)
Предоставила полное и верное решение в прикреплённом фото. Надеюсь разобраться!