Решение по методу Крамера.
x1 x2 x3 B
2 -1 2 3 Определитель
1 1 2 -4 -6
4 1 4 -3
Заменяем 1-й столбец на вектор результатов B:
3 -1 2
-4 1 2 Определитель
-3 1 4 -6
Заменяем 2-й столбец на вектор результатов B:
2 3 2
1 -4 2 Определитель
4 -3 4 18
Заменяем 3-й столбец на вектор результатов B:
2 -1 3
1 1 -4 Определитель
4 1 -3 6
x1= -6 / -6 = 1
x2= 18 / -6 = -3
x3= 6 / -6 = -1.
Определители проще находить методом "наклонных полосок".
Вот первый из них:
2 -1 2| 2 -1
1 1 2| 1 1
4 1 4| 4 1
2 1 4 + -1 2 4 + 2 1 1 -
-1 1 4 - 2 2 1 - 2 1 4 =
= 8 + -8 + 2 - -4 - 4 - 8 = -6
Возможный вывод: d
36 + x2
Используйте частное правило
d
dx dr, где u = x и v = x2 + 36:
(36+x2)( -00) - ((36+ x2)) dx (36 + x2)2
Производная от x равна 1:
-х( (36+х2))+ 1 (36+ x2) x2)
(36 + x2)2
Упростите выражение:
36 + x2 - ( 4 (36+х2))
(36 + x2)2
Дифференцируйте сумму термин за термином:
36 + x2 - (36) + (x2)
(36 + x2)
Производная от 36 равна нулю:
36+x2-x(4 (x2) + 0)
(36 + x2)2
Упростите выражение:
(40+)
(36 + x2)2
Используйте правило мощности, --- (x") = n.x" 1, где = 2.
dx
(x2) = 2x:
36+x?-2xx
(36 + x2)2
Упростите выражение:
36 - x2
(36 + x2)2
Пусть a = 2k, а b = 2c + 1 (где c, k E Z)
A) a^2 - b^2 = (2k)^2 - (2c + 1)^2 = 4(k^2 - c^2 - c) - 1, не парное
Б) b - a = 2c + 1 - 2k = 2(c - k) + 1, не парное
В) a^2 + b^2 = (2k)^2 + (2c+1)^2 = 4(k^2 + c^2 + c) + 1, не парное
Г) a^2/2 + b^2/2 = (a^2 + b^2)/2 = 2(k^2 + c^2 + c) + 0.5, даже не целое
Д) (a+b+1)^2 = (2k + 2c + 1 + 1)^2 = (2(k+c+1))^2 = 4(k+c+1)^2, ПАРНОЕ
ответ : Д