Решим задачу на движение по воде
Дано:
t(по течению) = 2 ч
t(против течения)=3 ч
v(собств.)=18,6 км/ч
v(теч.)=1,3 км/ч
Найти
S=? км
Решение
1) Найдём скорость катера против течения реки:
v(против течения)=v(собственная) - v (течения реки)=18,6-1,3=17,3 (км/час)
2) Катер плыл 3 часа против течения со скоростью 17,3 км/час. Найдём расстояние, которое катер проплыл против течения:
S(расстояние)=v(скорость)×t(время)
S(против течения)=17,3×3= 51,9 (км)
3) Найдём скорость катера по течению:
v(по течению)=v(собственная) + v (течения реки)=18,6+1,3=19,9 (км/час)
4) Катер плыл 2 часа против течения со скоростью 19,9 км/час. Найдём расстояние, которое катер проплыл по течению:
S(расстояние)=v(скорость)×t(время)
S(по течению)=2×19,9=39,8 (км)
5) Расстояние за 5 часов равно:
S=S(против течения)+S(по течению)=51,9+39,8=91,7 (км)
ОТВЕТ: катер за 5 часов проплыл расстояние 91,7 километров.
КРАТКО
Решим данную задачу по действиям с пояснениями.
1) 18,6 + 1,3 = 19, 9 километров в час - скорость катера по течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
2) 18,6 - 1,3 = 17, 3 километров в час - скорость катера против течению реки, так как собственная скорость катера 18,6 километров в час, а скорость течения реки 1,3 километров в час;
3) 3 * 17,3 = 51,9 километров - расстояние, которое проплыл катер против течения реки;
4) 2 * 19,9 = 39,8 километров - расстояние, которое проплыл катер по течения реки;
5) 51,9 + 39,8 = 91,7 километров - такой путь проплыл катер.
ответ: 91,7 километров.
Объяснение:
1.
а) так как коэффициент при x² равен 1, т.е. положителен, то ветви параболы направлены вверх.
б) выделяем полный квадрат: y=(x-7/2)²-25/4. Отсюда следует, что абсцисса вершина параболы x=7/2, а ордината y=-25/4. Поэтому вершина параболы имеет координаты (7/2; -25/4).
с) ось симметрии параболы - это прямая, проходящая через её вершину параллельно оси ОУ. Поэтому в данном случае ось симметрии имеет уравнение x=7/2.
d) решая уравнение x²-7*x+6=(x-7/2)²-25/4, находим x1=6, x2=1. Поэтому функция обращается в 0 в точках (1;0) и (6;0).
e) пусть x=0, тогда y=6, пусть x=7, тогда y=6. Таким образом, найдены две дополнительные точки: (0;6) и (7;6)
2.
а) f(3)=-3²+2*3+15=12, f(-5)=-(-5)²+2*(-5)+15=-20.
б) пусть x=k. Подставляя это значение в выражение для функции, приходим к уравнению 7=-k²+2*k+15, или k²-2*k-8=0. Оно имеет решения k1=4, k2=-2. Таким образом, график проходит через точки (-2;7) и (4;7).
3.
выделяя полный квадрат, запишем уравнение для v(t) в виде v(t)=9-(h-1)²
1) приравнивая v(t) к нулю, приходим к уравнению 9-(h-1)²=0. Решая его и учитывая, что h>0, находим максимальную глубину h=4 м.
2) из уравнения v(t)=9-(h-1)² следует, что наибольшее значение, равное 9 м/с, v(t) достигает при h=1 м.
10/71 10/72 10/73
вот и всё