1) При p=0, получим неравенство -3х+3>0, откуда x<1, т.е. оно верно не при всех х, значит p=0 не подходит. 2) При p<0 левая часть задает параболу, ветви которой направлены вниз, поэтому она не лежит целиком в верхней полуплоскости, значит такие p нам не подходят. 3) При p>0 левая часть задает параболу, ветви которой направлены вверх, поэтому неравенство будет выполняться при любом х в случае, когда эта парабола не пересекает ось Ох, т.е. левая часть не имеет корней или, что то же самое,. ее дискриминант отрицателен: D=(2p-3)²-4p(p+3)=4p²-12p+9-4p²-12p=-24p+9<0, откуда p>9/24=3/8. ответ: p∈(3/8;+∞).
В решении.
Объяснение:
Дана функция у=√х:
а) График которой проходит через точку с координатами А(а; 3√7). Найдите значение а.
Нужно в уравнение подставить известные значения х и у (координаты точки А):
3√7 = √а
(3√7)² = (√а)²
9*7 = а
а=63;
b) Если х∈[49; 169], то какие значения будет принимать данная функция?
у= √х
у=√49=7;
у=√169=13;
При х∈ [49; 169] у∈ [7; 13].
с) y∈ [4; 15]. Найдите значение аргумента.
4 = √х
(4)² = (√х)²
х=16;
15 = √х
(15)² = (√х)²
х=225;
При х∈ [16; 225] y∈ [4; 15].
d) Найдите при каких х выполняется неравенство у ≤ 17.
√х <= 17
(√х)² <= (17)²
х <= 289;
Неравенство у ≤ 17 выполняется при х <= 289.