Вариант 3.
Объяснение:
Тождественное, т.е. тоже самое, схожее. Если убрать минус снизу у -5b-6y и поставить его перед числителем (см картинку мою), то получится -2x+a/6b+6y.
Знак "-" перед дробью можно внести либо в числитель, либо в знаменатель, но не туда и туда (иначе это будет уже 2 знака минус, т. е. в итоге - плюс) .
Мы вынесли минус в знаменателе и сделали его перед дробью, а потом внесли в числитель, в знаменателе естественно поменялись знаки, раз минус вынесли и в числители тоже, т.к. туда минус внесли.
Объяснение:
1)
I группа II группа
ученики: у=x-5 x
у+0,08у = x-0,1x
x-5=y
1,08y=0,9x 9x=10,8y
9x=10,8y
9x=10,8( x-5)=10,8x-54
10,8x-9x=54
1,8x=54
x=54:1.8=540:18=30
x=30
y=30-5=25
ответ: I группа II группа
ученики: 25 30
2) Пенал Блокнот
стоимость: x + 6y =450 грн.
x = y+0,5y
x=1,5y
1,5y+6y=450
7,5y=450
y=450:7,5=4500:75
y= 60 грн . ( Блокнот)
х=90 грн. (ПЕНАЛ)
Пенал и 2 блокнота стоит:
х+2у=90+2×60=90+120=210 грн.
ответ: 210 грн.
3)
I библиотека II библиотека
книги: х х
х-140 х-140×2,5
х-140 = 2,4×(х-350)
х-140=2,4(х-350)
2,4х-840-х+140=0
1,4х=700
х=700:1,4=7000:14
х=500
ответ: В каждой библиотеке было 500 книг
Объяснение:
Решите уравнение:
1) х^2 – 5х – 12 = 6;
х^2 – 5х – 12 -6 =0;
х^2-5х-18 =0;
a=1; b=-5; c=-18;
D=b^2-4ac=(-5)^2-4*1*(-18)=25+72=97>0 - 2 корня.
x1,2=(-b±√D)/2a=(-(-5)±√97)/2*1=(5±√97)/2;
x1=(5+√97)/2;
x2=(5-√97)/2.
3) х²+ 8x = -16 – 2x;
x^2+10x+16=0;
по т. Виета
x1+x2=-10;
x1*x2=16;
x1=-2; x2=-8.
2) х^2-5х-4 = 10;
х^2-5х-14=0;
по т. Виета
x1+x2=5; x1*x2=-14;
x1=-2; x2=7.
4) х^2 + х – 2 = 2 – 2x;
x^2+3x-4=0;
по т. Виета
x1+x2=-3; x1*x2=-4;
x1=1; x2=-4.
6) 9x - x2 = 6 + 2x;
-x^2+7x-6=0; [*(-1)]
x^2-7x+6=0;
по т. Виета
x1+x2=7; x1*x2=6;
x1=1; x2=6.
8) x — 2х2 + 7 = -1 – 5x;
-2x^2+6x+8=0; [:(-2)]
x^2-3x-4=0;
по т. Виета
x1+x2=3; x1*x2=-4;
x1=-1; x2=4.
5) -х^2 + 3х – 12 = — 4x;
-x^2+7x-12=0; [*(-1)]
x^2-7x+12=0
по т. Виета
x1+x2=7; x1*x2=12;
x1=3; x2=4.
7) - x^2 + 5х = 18 — 6x;
-x^2+11x-18=0; [*(-1)]
x^2-11x+18=0;
по т. Виета
x1+x2=11; x1*x2=18;
x1=2; x2=9.
9) 2x - 3x^2 + 8 = -1 - 6x.
-3x^2+8x+9=0; [*(-1)]
3x^2-8x-9=0;
a=3; b=-8; c=-9;
D=b^2-4ac=(-8)^2-4*3*(-9)=64+108=172>0 - 2 корня.
x1,2=(-b±√D)/2a=(-(-8)±√172)/2*3=(8±2√43)/6=(4±√43)/3;
x1=(4+√43)/3;
x2=(4-√43)/3.