За 4 часа
Объяснение:
Пусть на большом укладчике можно выполнить работу за х ч.
Тогда на малом за x+8 часов. А на обоих за 3 часа.
Значит, за 1 час на большом укладчике можно сделать 1/x часть работы, на малом 1/(x+8) часть, а на обоих 1/3 часть работы. Уравнение:
1/x + 1/(x+8) = 1/3
Умножаем все на x, на (x+8) и на 3.
3(x+8) + 3x = x(x+8)
3x + 24 + 3x = x^2 + 8x
0 = x^2 + 8x - 6x - 24
x^2 + 2x - 24 = 0
(x + 6)(x - 4) = 0
x1 = -6 < 0 не подходит
x2 = 4 часа - за это время мы сделаем работу на большом укладчике.
x+8 = 4+8 = 12 часов - за это время мы сделаем на малом укладчике.
1/4 + 1/12 = 3/12 + 1/12 = 4/12 = 1/3 - все правильно.
Всего цифр десять: 0, 1, 2, 3, 4, 5, 6, 7, 8 и 9.
Девятку можно поставить на любое из четырёх мест
На остальные места размещаем оставшиеся цифры, учитывая, что все они должны быть различны, получаем:
на первое из трёх оставшихся мест можно поставить любую их 9-ти цифр (девятку нельзя, остаётся 10-1=9 цифр);
на второе из оставшихся мест ставим любую из оставшихся 8-ми цифр;
на третье - любую из оставшихся семи цифр.
Перемножаем полученное количество расстановки:
4*9*8*7=2016
ответ: Ване придётся перебрать 2016 номеров.