М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
kareta2004
kareta2004
19.01.2022 15:49 •  Алгебра

Розв'яжіть систему рівнянь за до алгебраїчного додавання


Розв'яжіть систему рівнянь за до алгебраїчного додавання

👇
Ответ:
Ruslan123244
Ruslan123244
19.01.2022

(5;1),(-5;1),(5;-1),(-5;-1)

Объяснение:

\displaystyle\left \{ {{x^{2}+y^{2}=26} \atop {x^{2}-y^{2}=24}} \right.

\displaystyle 2x^{2}=50

\displaystyle x^{2}=25

x=±5

Подставим х и найдём у

\displaystyle 5^{2} +y^{2}=26

\displaystyle y^{2}=26-25

\displaystyle y^{2}=1

y==±1

4,5(98 оценок)
Открыть все ответы
Ответ:
Androidekstas
Androidekstas
19.01.2022
1) (x+1)(x-4) \leq 0
(x+1)(x-4)=0
x=-1
x=4
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)

2) \frac{x+6}{x-10} \geq 0
x=-6, x \neq 10
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)

3) подкоренное выражение должно быть неотрицательным:
-3x^{2}+x+4 \geq 0
3x^{2}-x-4 \leq 0
3x^{2}-x-4=0, D=1+4*4*3=490
x_{1}= \frac{1+7}{6}=\frac{8}{6}=\frac{4}{3}
x_{2}= \frac{1-7}{6}=-1
-1≤x≤4/3
4,5(40 оценок)
Ответ:
Ala012447
Ala012447
19.01.2022
1) (x+1)(x-4) \leq 0
(x+1)(x-4)=0
x=-1
x=4
При x≤-1 - функция положительная
При -1≤x≤4 - функция отрицательная
При x≥4 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная) - это x≤-1 и x≥4
ответ: x∈(-бесконечность; -1]U[4; +бесконечность)

2) \frac{x+6}{x-10} \geq 0
x=-6, x \neq 10
При x≤-6 - функция положительная
При -6≤x<10 - функция отрицательная
При x>10 - функция положительная
выбираем те интервалы, где функция положительная (неотрицательная):
x∈(-бесконечность; -6]U(10; +бесконечность)

3) подкоренное выражение должно быть неотрицательным:
-3x^{2}+x+4 \geq 0
3x^{2}-x-4 \leq 0
3x^{2}-x-4=0, D=1+4*4*3=490
x_{1}= \frac{1+7}{6}=\frac{8}{6}=\frac{4}{3}
x_{2}= \frac{1-7}{6}=-1
-1≤x≤4/3
4,4(27 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ