Пусть х(км/ч)-скорость второго автомобилиста, тогда скорость первого х+10 (км/ч) Знаем расстояние (560 км), знаем скорость каждого автомобилиста. Отсюда найдём время (расстояние разделить на скорость). Получим: 560/х (скорость второго автомобилиста) 560/х+10 (скорость второго автомобилиста)Так как первый автомобилист приехал на 1 час раньше, чем второй, то получим такое уравнение: 560/х + 1= 560/х+10 (время второго автомобилиста + 1 час, за который он догнал первого = время первого автомобилиста) И решаем это уравнение Находим корни Пишем в конце:По смыслу задачи х больше 0 находим скорости
Пусть х(км/ч)-скорость второго автомобилиста, тогда скорость первого х+10 (км/ч) Знаем расстояние (560 км), знаем скорость каждого автомобилиста. Отсюда найдём время (расстояние разделить на скорость). Получим: 560/х (скорость второго автомобилиста) 560/х+10 (скорость второго автомобилиста)Так как первый автомобилист приехал на 1 час раньше, чем второй, то получим такое уравнение: 560/х + 1= 560/х+10 (время второго автомобилиста + 1 час, за который он догнал первого = время первого автомобилиста) И решаем это уравнение Находим корни Пишем в конце:По смыслу задачи х больше 0 находим скорости
6 - √29; 6 + √29 - корни данного квадратного уравнения.
Объяснение:
x² + 12x + 7 = 0
D = b² - 4*a*c. D = 144 - 28 = 116
x₁ ₂ = (-b ± √D) / 2*a = (12 ± 2√29) / 2 = 6 ± √29
ответ: 6 ± √29