Пусть большее простое число из T(x) равно n.Сравним числа:n^2 и 2T(x),то есть квадрат наибольшего простого числа и удвоенную сумму простых чисел до n:
Очевидно,что все простые числа,кроме 2 нечетные,а значит T(x) меньше суммы двойки и натуральных нечетных чисел от 1 до n(так как не все нечетные числа являются простыми).
Рассмотрим данную сумму,члены которой,кроме двойки образуют арифметическую прогрессию.
Сравним 2S и n^2
Правая часть больше левой(нуля) при:
А так как S>T(X) и n^2>2S,то n^2>2T(x)
Значит и x^2>2T(x) при n,указанном выше.
Рассмотрим оставшиеся 2 варианта:
n=2 n=3
ответ:
Пусть большее простое число из T(x) равно n.Сравним числа:n^2 и 2T(x),то есть квадрат наибольшего простого числа и удвоенную сумму простых чисел до n:
Очевидно,что все простые числа,кроме 2 нечетные,а значит T(x) меньше суммы двойки и натуральных нечетных чисел от 1 до n(так как не все нечетные числа являются простыми).
Рассмотрим данную сумму,члены которой,кроме двойки образуют арифметическую прогрессию.
Сравним 2S и n^2
Правая часть больше левой(нуля) при:
А так как S>T(X) и n^2>2S,то n^2>2T(x)
Значит и x^2>2T(x) при n,указанном выше.
Рассмотрим оставшиеся 2 варианта:
n=2 n=3
ответ:
- 16 :![(-\frac{4}{9}](/tpl/images/4519/2825/05982.png)
![)](/tpl/images/4519/2825/9c8e9.png)
16 *![\frac{9}{4}](/tpl/images/4519/2825/e75fb.png)
4 * 9 = 36