1) и сверху и снизу приведем к общему знаменателю:
((ab+a)\b)\((ab-a)\b) вынесем общий множитель, сократим \b, получим
a(b+1) \ a(b-1) сократим а, получим
(b+1) \ (b-1) .
3) х^2+2x-1≤0
найдем корни:
D=4-4=0; D=0, следовательно уравнение имеет смежные ("одинаковые" ) корни, найдем их по формуле
х1,2= -b\2a
х1,2 =-2\2=-1.
В это точке функция равна нулю.
Ветви параболы направлены вверх, схематично можно зарисовать и станет видно, что функция на всей своей протяженности >0, только в точке -1 равна нулю, это и будет ответом на вопрос.
ответ: х=1
4. Среднее арифметическое - сложить все и разделить на количество.
(22+24+28+30+32+18+21) /7 = 175/7=25.
Медиана - середина ряда данных, для того чтобы найти ее выпишем весь ряд данных по возрастанию:
18, 21, 22, 24, 28, 30, 32. Теперь попарно зачеркиваем бОльшее и Меньшее число, постепенно приближаясь к середине. Если там останется одно число - оно и будет медианой, если пара чисел - медианой будет их среднее арифметическое.
здесь медиана - 24.
Спрашивают. на сколько отличается ср.ар и медина. 25-24=1. ответ: 1
5. Странно, что это дают в ГИА, я такого в пробниках еще не встречал.
Зная что один из корней - множитель 75, подберем его и проверим.
х1=3, сделаем проверку.
(3^3)-3*(3^2) -25*3 + 75 = 81-81-75+75=0
Убедились, что один из корней равен трем.
теперь разделим весь этот многочлен на х-3 (на найденный корень), получим:
X^2-25=0
X^2=25
x=±5
Сомневаюсь, что это дадут в ГИА - это полноценный десятый класс.
х1=3, х2=-5, х3=5.
ответ: 3, -5, 5
5x≥6
x≥1.2
2) (4-x)²=4² - 2*4*x + x² = 16-8x+x²
3) 5x-6=(4-x)²
5x-6=16-8x+x²
-x² +5x+8x -6 -16=0
-x² +13x-22=0
x² -13x+22=0
D=(-13)² - 4*22= 169-88=81
x₁= (13-9)/2=2
x₂=(13+9)/2=11
Проверка корней:
1) х=2 √(5*2-6) +2=4
√4 + 2=4
4=4
х=2 - корень уравнения
2) х=11 √(11*2-6) +11= 4
√16 + 11=4
15≠4
х=11 - не корень уравнения.
Значит, данное уравнение имеет один корень х=2.
Сумма корней равна 2.