М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
iriskaesipova
iriskaesipova
04.06.2021 05:50 •  Алгебра

На рисунке 6 схематично изображен график функций y=x^2-4x+3. Запишите решения неравенств а)х^2-4х+3=<0 b)x^2-4x+3<0

👇
Открыть все ответы
Ответ:
марттт
марттт
04.06.2021
План действий такой:
1) ищем производную.
2) приравниваем её к нулю, ищем критические точки
3) проверяем, какие из этих точек попадают в указанный промежуток.
4) находим значения данной функции на концах  промежутка и в точках, попавших в этот промежуток.
5) из ответов выбираем наибольшее значение и наименьшее.
Начали?
1) Производная = х + 5 - (х + 1)/ (х + 5)²  ;  (х≠-5)
2) (х + 1 - х - 5)/( х + 5)² = 0;
-4/((х + 5) ² = 0 ;
Эта дробь ≠ 0, т.к. черта дроби - это деление. При делении получается нуль, если частное = 0, а  у нас частное = - 4
вывод: данная функция критических точек не имеет ( она имеет точку разрыва в точке х = -5)
3) -
4) х = -4
у = -4 + 1/-4 +5=-3
    х = -3
у = -3 + 1/ -3 +5= -1
max y = -1
min y = -3
4,8(10 оценок)
Ответ:
ek72Wasdk
ek72Wasdk
04.06.2021
[tg x]\cdot \sqrt{3-tg^2x} =tg x

Область допустимих значений уравнения определяем по условию:
- \sqrt{3} \leq tg x \leq \sqrt{3}. Поэтому [tg x] может имееть значение только при  -1; 0; 1. Итак, имеем 4 систем уравнений
\left \{ {{[tgx]=-2} \atop { \sqrt{3-tg^2x}=- \frac{1}{2}tg x, }} \right. или \left \{ {{\sqrt{3-tg^2x}=-tg x} \atop {[tgx]=-1}} \right. или \left \{ {{[tg x]=0} \atop {tg x=0}} \right.
               или \left \{ {{[tg x]=1} \atop {\sqrt{3-tg^2x}=tg x}} \right.
Упростим и получим такие уравнения
\left \{ {{-\sqrt{3} \leq tg x< -1} \atop {tg x=- \sqrt{ \frac{12}{5} } }} \right. или \left \{ {{-1 \leq tg x< 0} \atop {tg x=-\sqrt{ \frac{3}{2} } }} \right. или tg x=0
                      или \left \{ {{1 \leq tg x
Подробное решение каждой системы:
\left \{ {{-\sqrt{3} \leq tg x
Возведем оба части до квадрата
\sqrt{3-tg^2x} =( \frac{1}{2} tg x)^2 \\ 3-tg^2x= \frac{1}{4} tg^2x|\cdot 4 \\ 12-4tg^2x=tg^2x \\ tg^2x= \frac{12}{5} \\ tg x=\pm \sqrt{\frac{12}{5} }
Корнем этого уравнени будет только -\sqrt{\frac{12}{5} }, а корень x=\sqrt{\frac{12}{5} } не пренадлежит промежутку [-√3;-1)

\left \{ {{-1 \leq tg x
Возведем оба части до квадрата
3-tg^2x=tg^2x \\ tg x=\pm \sqrt{ \frac{3}{2} }
\pm\sqrt{\frac{3}{2}} ∉ [-1;0)

tg x=0 \\ x=\pi n,n \in Z

\left \{ {{1 \leq tg x
Возведем оба части до квадрата
(\sqrt{3-tg^2x})^2=tg^2x \\ 3-tg^2x=tg^2x \\ tg x=\pm\sqrt{\frac{3}{2}}
решением этого уравнения будет корень x =\sqrt{\frac{3}{2}}
Корни уравнения
x_1=-arctg\sqrt{ \frac{12}{5} } +\pi n.n \in Z \\ x_2=\pi k, k \in Z \\ x_3=arctg\sqrt{ \frac{3}{2} } +\pi m.m \in Z
4,6(54 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ