У нас всего может выпасть 16( 2 в четвёртой, т.к. за каждый бросок количество комбинаций удваивается - 0 бросков - 1 комбинация, т.е. её просто нет, 1 бросок - 2 комбинации - орёл или решка, 2 броска - 4 комбинации: о-о, о-р,р-о, р-р и т. д.) комбинаций. Комбинаций, в которых орёл выпадает ровно 2 раза, 6 - монета выпадает орлом: 12,13,14,23,24,34(1,2,3,4 - номера бросков)(к слову, комбниаций, когда выпадает орёл ровно 3 раза - 4: 123,124,134,234, когда 1 раз - тоже 4 - 1,2,3,4, когда все 4 раза или не выпадет - по 1 разу(1234 и, соответственно, 0). 6+4+4+1+1=16), вероятность того, что орёл выпадет ровно 2 раза, рвна 6/16=3/8=0.375
Имеется в виду, что a, b, c - какие-то функции от x. Обычный сводящийся к рассмотрению нескольких случаев раскрытия модулей, хорош, если легко ищутся промежутки, на которых эти функции имеют определенный знак. Если же это не так, можно применить метод, который можно найти в книжке Голубева "Решение сложных и нестандартных задач по математике" (этот метод там не обосновывается, поскольку любой, берущийся за решение сложных и нестандартных задач, должен такое обоснование придумывать самостоятельно). Постараюсь это обоснование привести здесь. Основой метода служат следующие равносильности:
Доказывать здесь их не хотелось бы. Скажем, в книжке Мерзляка, Полонского и Якира "Алгебраический тренажер" они используются без доказательства. Если эти доказательства кому-то нужны, помещайте такое задание, и я обязательно их приведу. Кстати, для тех, кто забыл, напомню, что фигурной скобкой обозначается система, а квадратной - совокупность.
Переходим к неравенству
Перенеся |b| направо, получаем неравенство первого типа, поэтому оно равносильно системе
Рассуждая аналогично, получаем, что
Наконец, если мы имеем модуль и в правой части, то в случае неравенства |a|+|b|<|c| мы получаем систему
причем каждое из этих неравенств равносильно совокупности двух уравнений, полученных разными раскрытиями модуля c.
Аналогично решается неравенство |a|+|b|>|c|, только здесь получится не система четырех совокупностей, а совокупность четырех систем.