Средняя скорость — это отношение пройденного пути к времени движения. Пусть весь путь составляет S км, тогда первую половину пути автомобиль проехал за дробь, числитель — S, знаменатель — 2 умножить на 55 часов, а вторую — за дробь, числитель — S, знаменатель — 2 умножить на 70 часов. Средняя скорость автомобиля равна:
дробь, числитель — S, знаменатель — дробь, числитель — S {2 умножить на 55, знаменатель — плюс дробь, числитель — S, знаменатель — 2 умножить на 70 }= дробь, числитель — 2 умножить на 70 умножить на 55, знаменатель — 70 плюс 55 = дробь, числитель — 2 умножить на 70 умножить на 55, знаменатель — 125 = дробь, числитель — 2 умножить на 11 умножить на 14, знаменатель — 5 =61,6км/ч.
Пусть авс - трёхзначное число, а сва - число записанное те ми же цифрами, но в обратном порядке. Для удобства решения задачи, запишем разложение по разрядам данных чисел. Итак, авс=100а+10в+с сва=100с+10в+а Найдём разность данных чисел: авс-сва=(100а+10в+с)-(100с+10в+а)=100а+10в+с-100с-10в-а= = 100а-100с-а+с=100(а-с)-(а-с)=(а-с)*(100-1)=(а-с)*99=(а-с)*9*11 Видно, что разность данных трёхзначных чисел кратна 9, т.к. она равна произведению множителей, один из которых равен 9. Что и требовалось доказать
Средняя скорость — это отношение пройденного пути к времени движения. Пусть весь путь составляет S км, тогда первую половину пути автомобиль проехал за дробь, числитель — S, знаменатель — 2 умножить на 55 часов, а вторую — за дробь, числитель — S, знаменатель — 2 умножить на 70 часов. Средняя скорость автомобиля равна:
дробь, числитель — S, знаменатель — дробь, числитель — S {2 умножить на 55, знаменатель — плюс дробь, числитель — S, знаменатель — 2 умножить на 70 }= дробь, числитель — 2 умножить на 70 умножить на 55, знаменатель — 70 плюс 55 = дробь, числитель — 2 умножить на 70 умножить на 55, знаменатель — 125 = дробь, числитель — 2 умножить на 11 умножить на 14, знаменатель — 5 =61,6км/ч.
ответ: 61,6.