Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
Переведем все минуты в часы: 10 минут=1/6 часа 2 минуты =1/30 часа Пусть скорость поезда v км/ч, тогда время за которое должен был пройти поезд 54/v часов. Пройдя 14 км со скорость v, он затратил 14/v часов, Ему осталось пройти 54-14=40 км со скоростью (v+10) км/ч. Составим и решим уравнение: 54/v+1/30=14/v+40/(v+10)+1/6 (54-14)/v+40/(v+10)=1/6-1/30 40(v+10-v)/(v(v+10))=2/15 400*15/2=v(v+10) v²+10v-3000=0 D=10²+4*3000=12100=110² v₁=(-10+110)/2=50 км/ч v₂=(-10-110)/2=-60 <0
ответ 50 км/ч
Пусть скорость реки x км/ч, тогда скорость по течению (x+3) км/ч, а против (х-3) км/ч. Составим и решим уравнение. 4/(x-3)+25/(x+3)=1 4x+12+25x-75=x²-9 х²-29х+54=0 D=29²-4*54=625=25² х₁=(29-25)/2=2 км/ч < cкорости течения х₂=(29+25)/2=27 км/ч скорость парохода ответ 27 км/ч
2(t-1)
Раскрываем скобки пишим 2t-2=0
2 переносим
2t=2 /2
t=1
По такому принципу решаем остальные
Объяснение: