М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
элюсся5
элюсся5
23.09.2020 11:21 •  Алгебра

Решите уравнение sin0.5x=-1

👇
Ответ:
алмат112
алмат112
23.09.2020

Объяснение:

sin\frac{x}{2} =-1\\\frac{x}{2} =\frac{3\pi }{2} +2\pi n\\\\x=3\pi +4\pi n

n∈Z

4,5(69 оценок)
Открыть все ответы
Ответ:

Если осевое сечение конуса - равносторонний треугольник, то в конусе половина образующей равна радиусу основания. Проведем осевое сечение и получившийся треугольник обозначим ABC, где A - вершина конуса. Опустим высоту AH - которая явл. так же медианой и биссектрисой.

BH обозначим r - радиус окружности в основании конуса.

BA тогда будет 2r

Из прямоугольного треугольника ABH:

AH² = BA² - BH²

AH² = 4r² -  r²

AH² = 3r²

AH = r√3

Объем конуса V = πr²h/3  (где r - радиус основания, а h - высота)

V = πBH²AH²/3 = πr²r√3/3 = πr³√3/3

Но V так же равно 36. 

πr³√3/3 = 36

r³ = 36√3/π

r = ∛(36√3/π)

Вычислим радиус вписанного шара - R

Осевое сечение шара является вписанной окружностью для треугольника в осевом сечении конуса. R этой окружности и R шара - одинаковы. 

Так как треугольник ABC равносторонний R = a√3/6  (а - сторона треугольника)

Сторона треугольника - 2r = 2∛(36√3/π)

R = ∛(36√3/π)*√3/6

Vшар = 4πR³/3

Vшар = 4π(∛(36√3/π)*√3/6)³/3 = (4π(36√3/π)*3√3/36*6)/3 = 4*36√3*3√3/36*6*3 = 4/2 = 2

ответ: 2

4,4(67 оценок)
Ответ:
пелы
пелы
23.09.2020

Воспользуемся формулой |x| = \sqrt{x^{2} } :

\sqrt{(2^{x} -2)^{2} } =\sqrt{a^{2} } \\

Возведем обе части в квадрат:

(\sqrt{(2^{x} -2)^{2} })^{2} =(\sqrt{a^{2} })^{2} \\ (2^{x} -2)^{2} =a^{2} \\(2^{x} -2)^{2}-a^{2} =0\\(2^{x} -2-a)(2^{x} -2+a) = 0\\

Рассмотрим 3 случая :

1.

2^{x} -2-a = 0\\ 2^{x} -2+a \neq 0\\

----------------------

2^{x}= 2+a

Мы знаем, что любое число(кроме 0) в любой степени больше нуля, то есть 2+а > 0 => a>-2

2^{x} \neq 2-a\\

Так же 2-а уже должно быть меньше или равно нулю:

2-a ≤ 0 => a ≥ 2

Найдем пересечение => a ≥ 2

2.

По тому же принципу :

2^{x} -2-a \neq 0 = 2^{x} \neq 2+a = a\leq -2\\2^{x} -2+a=0 = 2^{x}=2-a= a< 2

Найдем пересечение => a ≤-2

3.

2^{x} -2-a=2^{x} -2+a\\-a = a\\2a = 0\\a = 0

----------------------------------------------------------------------

Объединим три ответа => a Є (-∞ ; -2] U [2 ; +∞)

ответ : a Є (-∞ ; -2] U [2 ; +∞) U {0}

P.S это одно из возможных решений, возможно вы найдете и по проще)

4,4(5 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ