М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
артемий59
артемий59
29.03.2020 20:47 •  Алгебра

Развяжите Рианны -3x+2=2x+7

👇
Ответ:
знайка208
знайка208
29.03.2020

Объяснение:

-3x+2=2x+7 ​

-3x-2x=7-2

-5x=5  | : (-5)

x=-1

4,4(67 оценок)
Открыть все ответы
Ответ:

x ∈{-2} ∪ [2;7]

Объяснение:

1)  Найдём нули функции у₁ = х²-5х-14:

х²-5х-14 = 0

х₁,₂ = 5/2 ± √(25/4 +14) = 5/2 ± √(81/4) = 5/2 ± 9/2

х₁ = 5/2 + 9/2 = 14/2 = 7

х₂ = 5/2 - 9/2 = - 4/2 = -2

Графиком функции у₁ = х²-5х-14 является парабола, ветви которой направлены вверх; следовательно, у₁ = х²-5х-14 ≤0 на участке

x ∈ [-2; 7].

2) Неравенство х² ≥ 4 эквивалентно неравенству: х²- 4 ≥ 0.

Найдём нули функции у₂ =х²- 4:

х²- 4 = 0

х² = 4

х = ± √4

х₃ = - 2

х₄ = 2

Графиком функции у₂ = х²- 4 является парабола, ветви которой направлены вверх; функция у₂ = х²- 4 больше или равна нулю на участках:

x ∈(-∞; -2] ∪ [2;+∞)

3) Объединяем полученные решения, для чего на числовой оси отмечаем точки х₂ = -2; х₃ = -2;  х₄ = 2; х₁ = 7 и находим перекрываемые области значений, одновременно удовлетворяющие неравенству х²-5х-14 ≤ 0 и неравенству х² ≥ 4:

x ∈{-2} ∪ [2;7]

ответ: x ∈{-2} ∪ [2;7]

4,4(5 оценок)
Ответ:
fdnk1
fdnk1
29.03.2020
|x-12|=a^2-5a+6

Выражение, стоящее в правой части равенства может принимать как полжительные значения, так и отрицательные значения и ноль. Всё зависит от числового значения   а. По определению модуля числа

|A|= \left\{\begin{array}{ccc}A,\; esli\; A\ \textgreater \ 0\\0,\; esli\; A=0\\-A,\; esli\; A\ \textless \ 0\end{array}\right.

По теореме Виета  a^2-5a+6=0  при  a_1=2,\; a_2=3 .
Поэтому |x-12|=x-12=0\; \to \; x=12 .
Знаки квадратного трёхчлена:  + + + (2) - - - (3) + + + 

 a^2-5a+6\ \textgreater \ 0\; \; \to \; \; a\in (-\infty ,2)\cup (3,+\infty ) 
В этом случае получаем два решения (при  x>12  и при х<12) .
А если a^2-5a+6\ \textless \ 0 , то решений уравнение не будет иметь,так как модуль не может принимать отрицательные значения. Это будет в случае  a\in (2,3) .
ответ:  уравнение имеет одно решение при а=2 и а=3;
             уравнение имеет 2 решения при а∈(-∞,2)∪(3,+∞) ;
             уравнение не имеет решений при а∈(2,3) .

 
4,5(86 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ