Функцию у = f(x), х є Х, называют четной, если для любого значения х из множества X выполняется равенство f (-х) = f (х). Определение 2. Функцию у = f(x), х є X, называют нечетной, если для любого значения х из множества X выполняется равенство f (-х) = -f (х). Пример 1. Доказать, что у = х4 — четная функция. Решение. Имеем: f(х) = х4, f(-х) = (-х)4. Но (-х)4 = х4. Значит, для любого х выполняется равенство f(-х) = f(х), т.е. функция является четной. Аналогично можно доказать, что функции у — х2,у = х6,у — х8 являются четными. Пример 2. Доказать, что у = х3~ нечетная функция. Решение. Имеем: f(х) = х3, f(-х) = (-х)3. Но (-х)3 = -х3. Значит, для любого х выполняется равенство f (-х) = -f (х), т.е. функция является нечетной. Аналогично можно доказать, что функции у = х, у = х5, у = х7 являются нечетными. Мы с вами не раз уже убеждались в том, что новые термины в математике чаще всего имеют «земное» происхождение, т.е. их можно каким-то образом объяснить. Так обстоит дело и с четными, и с нечетными функциями. Смотрите: у — х3, у = х5, у = х7 — нечетные функции, тогда как у = х2, у = х4, у = х6 — четные функции. И вообще для любой функции вида у = х" (ниже мы специально займемся изучением этих функций), где n — натуральное число, можно сделать вывод: если n — нечетное число, то функция у = х" — нечетная; если же n — четное число, то функция у = хn — четная. Существуют и функции, не являющиеся ни четными, ни нечетными. Такова, например, функция у = 2х + 3. В самом деле, f(1) = 5, а f (-1) = 1. Как видите, здесь Функция Значит, не может выполняться ни тождество f(-х) = f (х), ни тождество f(-х) = -f(х). Итак, функция может быть четной, нечетной, а также ни той ни другой.
1) запишем данное выражение в десятичных дробях: (6,5-4,25):2,5=2,25:2,5=0,9. 2) В уравнении смешанные дроби превратим в неправильные: 45/7:13/7=9/2:y ⇒ y=13×(9/2):45=13/10. 3)Обозначим через х количество десятков в двузначном числе, а через у - число единицю Тогда, учитывая условие задачи получим систему двух уравнений с двумя неизвестными: х+у=13 х-3=у Решая эту систему, получим: х=8, у=5, следовательно, искомое число 85. 4) Так как 21 км составляет 15% пути, весь путь найдем следующим образом: 21×100/15=140 (км). Теперь легко найти путь, пройденный во второй день: 140:7×2=40 (км)
4х-27/10=2(2х+3)/5
4х-27/10=4х+6/5
40х-27=2(4х+6)
40х-27=8х+12
40х-27=12+27
32х=39
х=39/32