Нужно использовать следующие свойства числовых неравенств:
1. К обеим частям верного числового неравенства можно прибавить одно и то же число и получится верное числовое неравенство, т.е.:
если а < b и с - любое число, то a + c < b + c.
2. Обе части верного числового неравенства можно умножить (разделить) на одно и то же положительное число, при этом получиться верное числовое неравенство; если же число отрицательное, то знак неравенства изменится на противоположный, т.е.:
если а < b и с > 0, то ac < bc;
если а < b и с < 0, то ac >bc.
Таким образом, если а < b, то: 2,5а < 2,5b (2,5 > 0),
а затем и 2,5а - 7 < 2,5b - 7.
ответ: 2,5а - 7 < 2,5b - 7.



![\left[\begin{array}{l} x \in [ -2 ; 2 ] \ , \\ x \in [ 4 ; 8 ] \ ; \end{array}\right](/tpl/images/0535/4278/f86a2.png)
![x \in [ -2 ; 2 ] \cup [ 4 ; 8 ] \ ;](/tpl/images/0535/4278/5c623.png)

![x \in [ -2 ; 2 ] \ ;](/tpl/images/0535/4278/03b6e.png)



![x \in [ 4 ; 8 ] \ ;](/tpl/images/0535/4278/2613a.png)


![x \in [ -1 ; 1 ] \ ;](/tpl/images/0535/4278/899ca.png)





![\left[\begin{array}{l} x \in [ 4 ; 5 ] \ , \\ x \in [ 7 ; 8 ] \ ; \end{array}\right](/tpl/images/0535/4278/7e7a6.png)
![x \in [ 4 ; 5 ] \cup [ 7 ; 8 ] \ ;](/tpl/images/0535/4278/70a2f.png)

                                                
(n²-64)/(5n-40)=(n-8)(n+8)/5(n+8)=(n-8)/5