Воспользуемся методом неопределенных коэффициентов. данный многочлен может расложится на произведения двух квадратных трехчленов: x^4-7x^2+1=(x^2+ax+b)(x^2+cx+d) (x^2+ax+b)(x^2+cx+d)=x^4+cx^3+dx^2+ax^3+acx^2+adx+bx^2+bcx+bd=x^4+(cx^3+ax^3)+(dx^2+acx^2+bx^2)+(adx+bcx)+bd=x^4+(c+a)*x^3+(d+ac+b)*x^2+(ad+bc)*x+bd составляем систему: c+a=0 d+ac+b=-7 ad+bc=0 bd=1 решаем: так как коэффиценты целые, то в равенстве bd=1 либо b=-1 и d=-1 либо b=1 и d=1 подставляем: c+a=0 -1+ac-1=-7 -a-c=0 c=-a -1-a^2-1=-7 -a^2=-7+2 a^2=5 a - нецелое, значит эти значения b и d не подходят. проверяем 2 вариант: c+a=0 1+ac+1=-7 a+c=0 c=-a 1-a^2+1=-7 -a^2=-7-2 -a^2=-9 a^2=9 a1=3; a2=-3 c1=-3; c2=3 получим: x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1) или x^4-7x^2+1=(x^2-3x+1)(x^2+3x+1) ответ: x^4-7x^2+1=(x^2+3x+1)(x^2-3x+1)
2x^2 = -18 | (делим на 2)
X^2 = -9
X1 = 3 и x2 = -3
3) x^2 + x - 6 = 0
D = b^2 -4ac
D = 1^2 - 4*1*(-6) = 1 + 24 = 25
X1 = -1+ корень из 25/2 = -1+5/2 = 4/2 = 2
X2 = -1 - корень из 25/2 = -1 -5/2 = -6/2 = -3
4) так же ка второе
5) 4x^2 - 36 = 0 | делим все на 4
X^2 - 9 = 0
X^2 = 9
X = 3 и x2= -3
6) x^4 -25x +144 = 0
X = t (тут замена, вроде)
X^2 -25x + 144 = 0
D = (-25)^2 - 4*1*144 = 625 - 576 = 49
X1 = -(-25)+ корень из 49 = 25+7 = 32
X2= -(-25) - корень из 49 = 25 -7 = 18
Дальше нужно подставлять куда-то в замену вроде, я не помню