М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
vika2075
vika2075
05.12.2021 20:06 •  Алгебра

Выполните действия (1.9—1.11): 9. 1) 52 - 200; 2) 13-33; 3) 20 + 26; 4) 24 - 32.

👇
Ответ:
Valeri050608
Valeri050608
05.12.2021

1)5²-200=25-200=-175

2)13-3³=13-27=-14

3)20+2⁶=20+64=84

4)2⁴-3²=16-9=7

4,8(39 оценок)
Открыть все ответы
Ответ:
йцццу
йцццу
05.12.2021
1)d(y)=r 2)y(-x)=(-x)^3-6(-x)^2+2(-x)-6=-x^3-6x^2-2x-6-функция ни чётная, ни нечётная, без периода 3)oy: x=0,y(0)=0^3-6*0^2+2*0-6=0-0+0-6=-6 a(0; -6) ox: y=0,x^3-6x^2+2x-6=0 x=5, b(5,; 0) ∞; 5, y< 0 (5,; ∞) y> 0 5)y'=3x^2-12x+2 3x^2-12x+2=0 d=144-24=120> 0 x1,2=(12±2√30)/(2*3)=(12±2√30)/6=2± (-∞; 2- )∪(2+ ; ∞) растёт (2- ; 2+ ) не растёт xmax=2- ,xmin=2+ 6)асимптоты нет 7)! 1/3_h/ubwwf7wwf7rgzhf23/ap9g/2dft0qt7e9dbj7u7ub39jzp9w/2sttsxs4p4/f0i/ [email  protected]= по-братски дай лучший ответ
4,5(85 оценок)
Ответ:
LentaKuim
LentaKuim
05.12.2021
Дано: sinx-siny=m; cosx+cosy=n. Найти: sin(x-y) и cos(x-y).
Решение:
1. Воспользуемся формулами разность синусов и сумма косинусов:
sinx-siny=2sin \frac{x-y}{2}cos \frac{x+y}{2}=m; cosx+cosy=2cos \frac{x+y}{2}cos \frac{x-y}{2}=n.
Заметим, что оба равенства содержат один и тот же член: cos \frac{x+y}{2}. Выразим его из обоих равенств:
cos \frac{x+y}{2}= \frac{m}{2sin \frac{x-y}{2}};cos \frac{x+y}{2}= \frac{n}{2cos \frac{x-y}{2}}.
В получившихся равенствах левые части равны, значит, равны и правые части:
\frac{m}{2sin \frac{x-y}{2}}= \frac{n}{2cos \frac{x-y}{2}}.
Преобразуем данное равенство:
\frac{2sin \frac{x-y}{2}}{2cos \frac{x-y}{2}}= \frac{m}{n};
\frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}}= \frac{m}{n};
( \frac{sin \frac{x-y}{2}}{cos \frac{x-y}{2}})^{2}=( \frac{m}{n})^{2};
\frac{sin^{2} \frac{x-y}{2}}{cos^{2} \frac{x-y}{2}}= \frac{m^{2}}{n^{2}};
Теперь используем формулы понижения степени синуса и косинуса:
\frac{1-cos(x-y)}{2}: \frac{1+cos(x-y)}{2}= \frac{m^{2}}{n^{2}};
Преобразуем данное равенство:
\frac{1-cos(x-y)}{1+cos(x-y)}= \frac{m^{2}}{n^{2}};
n²(1-cos(x-y))=m²(1+cos(x-y));
n²-n²cos(x-y)=m²+m²cos(x-y);
m²cos(x-y)+n²cos(x-y)=n²-m²;
cos(x-y)(m²+n²)=n²-m²;
cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
Используя основное тригонометрическое тождество, выразим sin(x-y):
sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}}.
ответ: sin(x-y)= \sqrt{1-( \frac{n^{2}-m^{2}}{m^{2}+n^{2}})^{2}};cos(x-y)= \frac{n^{2}-m^{2}}{m^{2}+n^{2}}.
4,5(35 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ