1)8х²-12х+36=0
D=(-(-12))²-4×8×36=144-1152=-1008
D<0, решения нет.
3х²+32+80=0
3x²+112=0|÷3
x²+37,33=0
x²=-37,33 Решения нет, так как любое число в квадрате не может быть отрицательным.
2)3x^2 + 32x + 80 = 0;
D = b^2 - 4ac, где:
ах^2 + bx + c = 0;
D = 32^2 - 4 * 3 * 80 = 1024 - 12 * 80 = 1024 - 960 = 64.
Сейчас найдем корень квадратный из дискриминанта:
√D = √64 = 8.
Найдем корни уравнения:
х1 = (-b + √D)/2a = (-32 + 8)/2 * 3 = -24/6 = -3 - первый корень уравнения.
х1 = (-b - √D)/2a = (-32 - 8)/2 * 3 = -40/6 = -6,67 - второй корень уравнения.
3)12y^2+16y-3=0
D1= 8^2-12*(-3)=64+36=100
y1=-8+10=2
y2=-8-10=-18
Подкоренное выражение не должно быть отрицательным, поэтому
8 - 0,5х² ≥ 0
решаем уравнение
8 - 0,5х² = 0
х² = 16
х1 = -4; х2 = 4
График функции f(x) = 8 - 0.5x² - парабола веточками вниз, положительные значения её находятся в области х между -4 и 4.
Таким образом, область определения заданной функции D(y) = [-4; 4]
2) Проверим функцию на чётность-нечётность
f(-x) = (-x + 2sinx)/(3cosx + x²)
f(-x) = -(x - 2sinx)/(3cosx + x²)
Очевидно, что функция нечётная, потому что f(-x) = -f(x)
Функция не является периодической, потому что в числителе есть добавка х, а в знаменателе х², которые не являются периодическими.
Действительно, f(x + T) = ((-x + T) - 2 sin(x + T))/(3cos(x + T) + (x + T)²) =
= ((-x + T) - 2 sinx)/(3cosx + (x + T)²) ≠ f(x)
Условие периодичности не выполняется.
3) f(x) = x/2 - 4/x
F(x) = 0
x/2 - 4/x = 0
ОДЗ: х≠0
х² - 8 = 0
х² = 8
х1 = -2√2; х2 = 2√2;
Функция равна нулю при х =-2√2 и х = 2√2