М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
obizyana88
obizyana88
07.11.2020 21:38 •  Алгебра

Вычислить производные функции


Вычислить производные функции

👇
Ответ:
Danil21K
Danil21K
07.11.2020

\displaystyle 1)\ \ y=\frac{4}{x}+5\sqrt{x}+ctg2x+5^{x}\\\\y'=-\frac{4}{x^2}+\frac{5}{2\sqrt{x}}-\frac{2}{sin^22x}+5^{x}\cdot ln5\\\\\\2)\ \ y=e^{2x}\cdot lnx\ \ ,\ \ \ y'=2e^{2x}\cdot lnx+e^{2x}\cdot \frac{1}{x}\\\\\\3)\ \ y=\Big(4x^3-9x^2+3x-\frac{1}{3}\Big)^4\\\\y'=4\Big(4x^3-9x^2+3x-\frac{1}{3}\Big)^3\cdot \Big(12x^2-18x+3\Big)

4)\ \ y=(2x-9)^{10}+\sqrt{3x-1}\\\\y'=10\, (2x-9)^9\cdot 2+\dfrac{1}{2\sqrt{3x-1}}\cdot 3=20\cdot (2x-9)^9+\dfrac{3}{2\sqrt{3x-1}}

\displaystyle 5)\ \ y=\frac{(8-5x)^4}{(2x-4)^3}\\\\y'=\frac{-20(8-5x)^3(2x-4)^3-6(2x-4)^2(8-5x)^4}{(3x-4)^6}=\\\\=\frac{(8-5x)^3(2x-4)^2\cdot (-20\, (2x-4)-6\, (8-5x)\, )}{(2x-4)^6}=

=\dfrac{(8-5x)^3(32-10x)}{16(x-2)^4}=\dfrac{(8-5x)^3(16-5x)}{8(x-2)^4}          

4,6(40 оценок)
Открыть все ответы
Ответ:
КУКУ2007
КУКУ2007
07.11.2020
647 - всего граней 6. если синяя вероятность 2/3, значит синих граней 6*2/3= 4, желтых граней получается 2

ооф
х=\= 0, это понятно,
также выражение
3 - 5x - 2x^² >=0
2х^2+5х-3=<0
х1,2=-1 и -3/2
функция 3 - 5x - 2x^² больше или равна 0 только на отрезке [-1;-1,5]
значит ооф [-1;-1,5]

6х + (x-2) (x+2) = (x+3)^² - 13
6х+ х^2-4=х^2+6х+9-13
-4=-4
уравнение имеет решением всю область действительных чисел

x+3\2 - х-4\7 = 1
3/2-4/7=1
21/14-8/14=1
13/14=1, что неверно, а значит уравнение не имеет действительных корней. вот теперь все :-)
4,8(80 оценок)
Ответ:
лрпку6у6у6о
лрпку6у6у6о
07.11.2020

task/30246276   А(4 ; 6) ;  m(b):  x - 5y +7=0 ;  h(b): x + 4y - 2= 0  ⇔y=(-1/4)*x +1/2.

решение   Для определенности пусть медиана BM , а  высота BH .  Координаты этой вершины  B определяется в результате решения системы  { x -5y +7=0 ; x + 4y-2= 0. ⇔{x-5y +7=0; 9y =9. ⇔{ x= -2 ; y= 1 .   B(- 2; 1).  

Уравнение стороны  AC будет имеет вид  y - 6 = k(x - 4) ;  угловой коэффициент  k определяется из  k* k₁= - 1 , где  k₁  угловой коэффициент прямой  BH (т.к. AC⊥ BH ):  x+4y -2=0 ⇔ y = (-1/4)x +1/2.       ( k₁ = -1/4 ⇒ k = 4 ).  y - 6 = 4(x - 4)    

уравнение стороны  AC :  4x - y - 10 = 0 .  * * *(1/√17)*(4x -y -10) =0 * * *  

  Для определения  координаты вершины С сначала определим координаты середины  стороны AC (точка M) , а для этого достаточно решить систему уравнений ( уравнении  прямых AC и  BM) :

{ x- 5y +7=0 ; 4x - y - 10 = 0.  ⇔ { x=3; y =2 .                     M(3 ; 2)  

x(C) =2x(М)-x(A) =2*3-4 =2 ; y(C) =2y(М)-y(A) =2*2-6 =-2.  C(2 ; -2)

* * * т.к.  x(М)= ( x(A) + x(C) ) / 2  ;   y(М)=( y(A) +y(C) ) / 2.  * * *

Уравнение прямой AB: y-6=[(1-6):(-2-4)]*(x -4) ⇔5x - 6y +16 =0.

* * *  уравнение прямой проходящей через точек М(x₁ ; y₁) и N(x₂;y₂) →  y - y₁ =[ (y₂ -y₁) / (y₂ -y₁) ] * (x -x₁ )   ;    k = (y₂ -y₁) / (x₂ -x₁)   * * *

Уравнение прямой BC: y-1=[(-2-1):(2 -(-2)]*(x -(-2)) ⇔ 3x+4y +2 =0.

Длина высоты BH (расстояние от точки B(-2 ; 1) до прямой AC ).  Нормальное  уравнение   прямой  AC:  (4x - y - 10) /√17  = 0                          * * * (4x - y - 10) /√(4²+ (-1)²)  = 0 * * *

d = | 4*(-2) - 1 - 10 |  / √17 =  19 /√17 .

4,8(6 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ