Сразу поменяю а на х. Мне так просто привычней. Чтобы значение выражения было целым число, то нужно просто избавится от знаменателя, т.е в числителе вынести за скобки (х+2) и сократить со знаменателем. Сразу заметим, что х не равен -2 Для этого можно было бы попробывать решить уравнение Но с другой стороны можно сразу проверить является ли х=-2 корнем этого уравнения 4-6-2=-4, Значит х=-2 не является корнем этого уравнения. Следовательно нам не удастся преобразовать числитель к виду (х+а)(х+в).
Нам остается последний вариант приравнять х=0, тогда мы получаем
ответ х=0 единственный целое значение, при котором выражение тоже целое число!
4x³+1/x³+2=((2x³)²+2x³+1)/x³. Если обозначить t=2x³, то количество подобных слагаемых в исходном выражении равно количеству слагаемых в многочлене 4032 степени (t²+t+1)²⁰¹⁶. Рассмотрим процесс раскрытия скобок в этом произведении. Возьмем произвольное слагаемое t^k, где k≤4032. Покажем, что коэффициент при нем не 0. Если k=2m, то m≤2016, и значит это слагаемое можно получить, перемножая t² из m скобок (t²+t+1), а из остальных скобок взяв 1. Если k=2m+1, то m≤2015 и значит t^k можно получить, взяв t² из m скобок, взяв t из одной скобки, а из остальных скобок взяв 1. Т.к. все получающиеся коэффициенты положительны, то при каждом слагаемом t^k будет ненулевой коэффициент, а значит общее количество слагаемых равно степени многочлена плюс 1, т.е. ответ 4033.
Чтобы значение выражения
было целым число, то нужно просто избавится от знаменателя, т.е в числителе вынести за скобки (х+2) и сократить со знаменателем.
Сразу заметим, что х не равен -2
Для этого можно было бы попробывать решить уравнение
Но с другой стороны можно сразу проверить является ли х=-2 корнем этого уравнения 4-6-2=-4, Значит х=-2 не является корнем этого уравнения.
Следовательно нам не удастся преобразовать числитель к виду (х+а)(х+в).
Нам остается последний вариант приравнять х=0, тогда мы получаем
ответ х=0 единственный целое значение, при котором выражение тоже целое число!